File size: 15,670 Bytes
ac6a4ef |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 |
"""Web application for the Agent Supervisor with GAIA benchmark integration.
This module provides a Gradio web interface for interacting with the Agent Supervisor
and evaluating it against the GAIA benchmark.
"""
import os
import json
import uuid
import asyncio
import requests
import pandas as pd
import gradio as gr
from typing import Dict, List, Optional
from langchain_core.messages import HumanMessage
from langgraph.checkpoint.memory import MemorySaver
from react_agent.graph import create_agent_supervisor_graph, get_compiled_graph
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
class GaiaAgent:
"""Agent implementation for the GAIA benchmark using the LangGraph supervisor."""
def __init__(self, model_name=None, checkpointer=None):
"""Initialize the GAIA agent with LangGraph architecture.
Args:
model_name: Optional model name to override the default
checkpointer: Optional checkpointer for persistence
"""
print("Initializing GaiaAgent...")
# Import Configuration class
from react_agent.configuration import Configuration
# Get configuration
config = Configuration.from_context()
default_model = config.model
# If no checkpointer provided, create a default one - using MemorySaver to avoid SQLite thread issues
if checkpointer is None:
from langgraph.checkpoint.memory import MemorySaver
checkpointer = MemorySaver()
print("Using in-memory checkpointer to avoid thread safety issues")
# Create and compile the graph
self.graph = get_compiled_graph(checkpointer=checkpointer)
# Configure the agent using values from Configuration
self.config = {
"configurable": {
# Use configuration model or override if provided
"model": model_name if model_name else default_model,
# Import specific models for each role from Configuration
"researcher_model": config.researcher_model,
"coder_model": config.coder_model,
"planner_model": config.planner_model,
"supervisor_model": config.supervisor_model,
"critic_model": config.critic_model,
"final_answer_model": config.final_answer_model,
# Other settings from Configuration
"max_search_results": config.max_search_results,
"recursion_limit": config.recursion_limit,
"max_iterations": config.max_iterations,
"allow_agent_to_extract_answers": config.allow_agent_to_extract_answers
}
}
print(f"GaiaAgent initialized successfully with model: {self.config['configurable']['model']}")
def __call__(self, question: str) -> str:
"""Process a question and return an answer formatted for GAIA benchmark.
Args:
question: The GAIA benchmark question
Returns:
Answer formatted for GAIA benchmark evaluation
"""
print(f"Agent received question: {question[:100]}...")
# Create a thread_id for this interaction
thread_id = str(uuid.uuid4())
self.config["configurable"]["thread_id"] = thread_id
# Import configuration
from react_agent.configuration import Configuration
config = Configuration.from_context()
# Add a system prompt to ensure proper GAIA format
system_prompt = """You are a general AI assistant. Answer the question concisely.
YOUR ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings.
If asked for a number, don't use commas or units like $ or % unless specified.
If asked for a string, don't use articles or abbreviations (e.g. for cities), and write digits as plain text unless specified otherwise.
Focus on brevity and correctness."""
# Create input state with the human message and system prompt
input_state = {
"messages": [HumanMessage(content=question)],
"configurable": {
"thread_id": thread_id,
"system_prompt": system_prompt,
"model": config.model # Ensure model is also set in the state
}
}
# Process the question with our graph
try:
# Execute the graph and get the final state
# Use invoke instead of stream to limit operations
try:
final_state = self.graph.invoke(input_state, config=self.config)
except Exception as e:
# If we hit recursion error, try again with higher limit
print(f"Initial invocation failed: {str(e)}")
# Use double the recursion limit as fallback
self.config["configurable"]["recursion_limit"] = config.recursion_limit * 2
final_state = self.graph.invoke(input_state, config=self.config)
# Extract the answer - either from gaia_answer or from the last message
if "gaia_answer" in final_state:
answer = final_state["gaia_answer"]
else:
messages = final_state.get("messages", [])
answer = messages[-1].content if messages else "No answer generated."
# Clean the answer to ensure proper GAIA format (remove any FINAL ANSWER prefix)
if "FINAL ANSWER:" in answer:
answer = answer.split("FINAL ANSWER:")[1].strip()
print(f"Agent returning answer: {answer[:100]}...")
return answer
except Exception as e:
error_msg = f"Error processing question: {str(e)}"
print(error_msg)
return error_msg
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""Fetches all questions, runs the GaiaAgent on them, submits answers, and displays the results."""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username = f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
# 1. Instantiate Agent
try:
agent = GaiaAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run the Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
answer = agent(question_text)
# Format answers according to API requirements - use submitted_answer as required
answers_payload.append({
"task_id": task_id,
"submitted_answer": answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Answer": answer
})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# Function to test a single random question
def test_random_question():
"""Fetch a random question from the API and run the agent on it."""
api_url = DEFAULT_API_URL
random_question_url = f"{api_url}/random-question"
try:
# Fetch a random question
response = requests.get(random_question_url, timeout=15)
response.raise_for_status()
question_data = response.json()
if not question_data:
return "Error: Received empty response from random question endpoint.", None
task_id = question_data.get("task_id")
question_text = question_data.get("question")
if not task_id or not question_text:
return "Error: Invalid question format received.", None
# Initialize agent and get answer
agent = GaiaAgent()
answer = agent(question_text)
# Return results
result = {
"Task ID": task_id,
"Question": question_text,
"Answer": answer
}
return "Test completed successfully.", result
except Exception as e:
return f"Error testing random question: {str(e)}", None
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# GAIA Benchmark Agent Evaluation")
gr.Markdown(
"""
**Instructions:**
1. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
2. Click 'Run Evaluation & Submit All Answers' to fetch questions, run the agent, submit answers, and see the score.
3. Alternatively, click 'Test on Random Question' to test the agent on a single random question.
---
**Note:** Running the agent on all questions may take some time. Please be patient while the agent processes all the questions.
"""
)
gr.LoginButton()
with gr.Tabs():
with gr.TabItem("Full Evaluation"):
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
with gr.TabItem("Test Single Question"):
test_button = gr.Button("Test on Random Question")
test_status = gr.Textbox(label="Test Status", lines=2, interactive=False)
test_result = gr.JSON(label="Question and Answer")
test_button.click(
fn=test_random_question,
outputs=[test_status, test_result]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for GAIA Agent Evaluation...")
demo.launch(debug=True, share=False)
|