NetMonTTS / app.py
imanibase's picture
first commit
b27cf16
from flask import Flask, request, jsonify, send_from_directory, abort
from transformers import WhisperProcessor, WhisperForConditionalGeneration
import librosa
import torch
import numpy as np
from onnxruntime import InferenceSession
import soundfile as sf
import os
import sys
import uuid
import logging
from flask_cors import CORS
import threading
import tempfile
from huggingface_hub import snapshot_download
from huggingface_hub.utils import RepositoryNotFoundError, HfHubHTTPError
import time
from tts_processor import preprocess_all
import hashlib
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
app = Flask(__name__)
CORS(app, resources={r"/*": {"origins": "*"}})
# Global lock to ensure one method runs at a time
global_lock = threading.Lock()
# Repository ID and paths
kokoro_model_id = 'onnx-community/Kokoro-82M-v1.0-ONNX'
model_path = 'kokoro_model'
voice_name = 'am_adam' # Example voice: af (adjust as needed)
# Directory to serve files from
SERVE_DIR = os.environ.get("SERVE_DIR", "./files") # Default to './files' if not provided
os.makedirs(SERVE_DIR, exist_ok=True)
def validate_audio_file(file):
if file.content_type not in ["audio/wav", "audio/x-wav", "audio/mpeg", "audio/mp3"]:
raise ValueError("Unsupported file type")
file.seek(0, os.SEEK_END)
file_size = file.tell()
file.seek(0) # Reset file pointer
if file_size > 10 * 1024 * 1024: # 10 MB limit
raise ValueError("File is too large (max 10 MB)")
def validate_text_input(text):
if not isinstance(text, str):
raise ValueError("Text input must be a string")
if len(text.strip()) == 0:
raise ValueError("Text input cannot be empty")
if len(text) > 1024: # Limit to 1024 characters
raise ValueError("Text input is too long (max 1024 characters)")
file_cache = {}
def is_cached(cached_file_path):
"""
Check if a file exists in the cache.
If the file is not in the cache, perform a disk check and update the cache.
"""
if cached_file_path in file_cache:
return file_cache[cached_file_path] # Return cached result
exists = os.path.exists(cached_file_path) # Perform disk check
file_cache[cached_file_path] = exists # Update the cache
return exists
import time
from huggingface_hub import snapshot_download
from huggingface_hub.utils import RepositoryNotFoundError, HfHubHTTPError
def initialize_models():
global sess, voice_style, processor, whisper_model
max_retries = 5 # Maximum number of retries
retry_delay = 2 # Initial delay in seconds (will double after each retry)
for attempt in range(max_retries):
try:
# Download the ONNX model if not already downloaded
if not os.path.exists(model_path):
logger.info(f"Attempt {attempt + 1} to download and load Kokoro model...")
kokoro_dir = snapshot_download(kokoro_model_id, cache_dir=model_path)
logger.info(f"Kokoro model directory: {kokoro_dir}")
else:
kokoro_dir = model_path
logger.info(f"Using cached Kokoro model directory: {kokoro_dir}")
# Validate ONNX file path
onnx_path = None
for root, _, files in os.walk(kokoro_dir):
if 'model.onnx' in files:
onnx_path = os.path.join(root, 'model.onnx')
break
if not onnx_path or not os.path.exists(onnx_path):
raise FileNotFoundError(f"ONNX file not found after redownload at {kokoro_dir}")
logger.info("Loading ONNX session...")
sess = InferenceSession(onnx_path)
logger.info(f"ONNX session loaded successfully from {onnx_path}")
# Load the voice style vector
voice_style_path = None
for root, _, files in os.walk(kokoro_dir):
if f'{voice_name}.bin' in files:
voice_style_path = os.path.join(root, f'{voice_name}.bin')
break
if not voice_style_path or not os.path.exists(voice_style_path):
raise FileNotFoundError(f"Voice style file not found at {voice_style_path}")
logger.info("Loading voice style vector...")
voice_style = np.fromfile(voice_style_path, dtype=np.float32).reshape(-1, 1, 256)
logger.info(f"Voice style vector loaded successfully from {voice_style_path}")
# Initialize Whisper model for S2T
logger.info("Downloading and loading Whisper model...")
processor = WhisperProcessor.from_pretrained("openai/whisper-base")
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base")
whisper_model.config.forced_decoder_ids = None
logger.info("Whisper model loaded successfully")
# If everything succeeds, break out of the retry loop
break
except (RepositoryNotFoundError, HfHubHTTPError, FileNotFoundError) as e:
logger.error(f"Attempt {attempt + 1} failed: {str(e)}")
if attempt == max_retries - 1:
logger.error("Max retries reached. Failed to initialize models.")
raise # Re-raise the exception if max retries are reached
time.sleep(retry_delay)
retry_delay *= 2 # Exponential backoff
# Initialize models
initialize_models()
# Health check endpoint
@app.route('/health', methods=['GET'])
def health_check():
try:
return jsonify({"status": "healthy"}), 200
except Exception as e:
logger.error(f"Health check failed: {str(e)}")
return jsonify({"status": "unhealthy"}), 500
# Text-to-Speech (T2S) Endpoint
@app.route('/generate_audio', methods=['POST'])
def generate_audio():
"""Text-to-Speech (T2S) Endpoint"""
with global_lock: # Acquire global lock to ensure only one instance runs
try:
logger.debug("Received request to /generate_audio")
data = request.json
text = data['text']
output_dir = data.get('output_dir')
validate_text_input(text)
logger.debug(f"Text: {text}")
if not output_dir:
raise ValueError("Output directory is required but not provided")
# Ensure output_dir is an absolute path and valid
if not os.path.isabs(output_dir):
raise ValueError("Output directory must be an absolute path")
if not os.path.exists(output_dir):
raise ValueError(f"Output directory does not exist: {output_dir}")
# Generate a unique hash for the text
text = preprocess_all(text)
logger.debug(f"Processed Text {text}")
text_hash = hashlib.sha256(text.encode('utf-8')).hexdigest()
hashed_file_name = f"{text_hash}.wav"
cached_file_path = os.path.join(output_dir, hashed_file_name)
logger.debug(f"Generated hash for processed text: {text_hash}")
logger.debug(f"Output directory: {output_dir}")
logger.debug(f"Cached file path: {cached_file_path}")
# Check if cached file exists
if is_cached(cached_file_path):
logger.info(f"Returning cached audio for text: {text}")
return jsonify({"status": "success", "output_path": cached_file_path})
# Tokenize text
logger.debug("Tokenizing text...")
from kokoro import phonemize, tokenize # Import dynamically
tokens = tokenize(phonemize(text, 'a'))
logger.debug(f"Initial tokens: {tokens}")
if len(tokens) > 510:
logger.warning("Text too long; truncating to 510 tokens.")
tokens = tokens[:510]
tokens = [[0, *tokens, 0]] # Add pad tokens
logger.debug(f"Final tokens: {tokens}")
# Get style vector based on token length
logger.debug("Fetching style vector...")
ref_s = voice_style[len(tokens[0]) - 2] # Shape: (1, 256)
logger.debug(f"Style vector shape: {ref_s.shape}")
# Run ONNX inference
logger.debug("Running ONNX inference...")
audio = sess.run(None, dict(
input_ids=np.array(tokens, dtype=np.int64),
style=ref_s,
speed=np.ones(1, dtype=np.float32),
))[0]
logger.debug(f"Audio generated with shape: {audio.shape}")
# Fix audio data for saving
audio = np.squeeze(audio) # Remove extra dimension
audio = audio.astype(np.float32) # Ensure correct data type
# Save audio
logger.debug(f"Saving audio to {cached_file_path}...")
sf.write(cached_file_path, audio, 24000) # Save with 24 kHz sample rate
logger.info(f"Audio saved successfully to {cached_file_path}")
return jsonify({"status": "success", "output_path": cached_file_path})
except Exception as e:
logger.error(f"Error generating audio: {str(e)}")
return jsonify({"status": "error", "message": str(e)}), 500
# Speech-to-Text (S2T) Endpoint
@app.route('/transcribe_audio', methods=['POST'])
def transcribe_audio():
"""Speech-to-Text (S2T) Endpoint"""
with global_lock: # Acquire global lock to ensure only one instance runs
audio_path = None
try:
logger.debug("Received request to /transcribe_audio")
file = request.files['file']
validate_audio_file(file)
# Generate a unique filename using uuid
unique_filename = f"{uuid.uuid4().hex}_{file.filename}"
audio_path = os.path.join("/tmp", unique_filename)
file.save(audio_path)
logger.debug(f"Audio file saved to {audio_path}")
# Load and preprocess audio
logger.debug("Processing audio for transcription...")
audio_array, sampling_rate = librosa.load(audio_path, sr=16000)
input_features = processor(
audio_array,
sampling_rate=sampling_rate,
return_tensors="pt"
).input_features
# Generate transcription
logger.debug("Generating transcription...")
predicted_ids = whisper_model.generate(input_features)
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
logger.info(f"Transcription: {transcription}")
return jsonify({"status": "success", "transcription": transcription})
except Exception as e:
logger.error(f"Error transcribing audio: {str(e)}")
return jsonify({"status": "error", "message": str(e)}), 500
finally:
# Ensure temporary file is removed
if audio_path and os.path.exists(audio_path):
os.remove(audio_path)
logger.debug(f"Temporary file {audio_path} removed")
@app.route('/files/<filename>', methods=['GET'])
def serve_wav_file(filename):
"""
Serve a .wav file from the configured directory.
Only serves files ending with '.wav'.
"""
# Ensure only .wav files are allowed
if not filename.lower().endswith('.wav'):
abort(400, "Only .wav files are allowed.")
# Check if the file exists in the directory
file_path = os.path.join(SERVE_DIR, filename)
logger.debug(f"Looking for file at: {file_path}")
if not os.path.isfile(file_path):
logger.error(f"File not found: {file_path}")
abort(404, "File not found.")
# Serve the file
return send_from_directory(SERVE_DIR, filename)
# Error handlers
@app.errorhandler(400)
def bad_request(error):
"""Handle 400 errors."""
return {"error": "Bad Request", "message": str(error)}, 400
@app.errorhandler(404)
def not_found(error):
"""Handle 404 errors."""
return {"error": "Not Found", "message": str(error)}, 404
@app.errorhandler(500)
def internal_error(error):
"""Handle unexpected errors."""
return {"error": "Internal Server Error", "message": "An unexpected error occurred."}, 500
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860)