from flask import Flask, request, jsonify, send_from_directory, abort from transformers import WhisperProcessor, WhisperForConditionalGeneration import librosa import torch import numpy as np from onnxruntime import InferenceSession import soundfile as sf import os import sys import uuid import logging from flask_cors import CORS import threading import tempfile from huggingface_hub import snapshot_download from huggingface_hub.utils import RepositoryNotFoundError, HfHubHTTPError import time from tts_processor import preprocess_all import hashlib # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) app = Flask(__name__) CORS(app, resources={r"/*": {"origins": "*"}}) # Global lock to ensure one method runs at a time global_lock = threading.Lock() # Repository ID and paths kokoro_model_id = 'onnx-community/Kokoro-82M-v1.0-ONNX' model_path = 'kokoro_model' voice_name = 'am_adam' # Example voice: af (adjust as needed) # Directory to serve files from SERVE_DIR = os.environ.get("SERVE_DIR", "./files") # Default to './files' if not provided os.makedirs(SERVE_DIR, exist_ok=True) def validate_audio_file(file): if file.content_type not in ["audio/wav", "audio/x-wav", "audio/mpeg", "audio/mp3"]: raise ValueError("Unsupported file type") file.seek(0, os.SEEK_END) file_size = file.tell() file.seek(0) # Reset file pointer if file_size > 10 * 1024 * 1024: # 10 MB limit raise ValueError("File is too large (max 10 MB)") def validate_text_input(text): if not isinstance(text, str): raise ValueError("Text input must be a string") if len(text.strip()) == 0: raise ValueError("Text input cannot be empty") if len(text) > 1024: # Limit to 1024 characters raise ValueError("Text input is too long (max 1024 characters)") file_cache = {} def is_cached(cached_file_path): """ Check if a file exists in the cache. If the file is not in the cache, perform a disk check and update the cache. """ if cached_file_path in file_cache: return file_cache[cached_file_path] # Return cached result exists = os.path.exists(cached_file_path) # Perform disk check file_cache[cached_file_path] = exists # Update the cache return exists import time from huggingface_hub import snapshot_download from huggingface_hub.utils import RepositoryNotFoundError, HfHubHTTPError def initialize_models(): global sess, voice_style, processor, whisper_model max_retries = 5 # Maximum number of retries retry_delay = 2 # Initial delay in seconds (will double after each retry) for attempt in range(max_retries): try: # Download the ONNX model if not already downloaded if not os.path.exists(model_path): logger.info(f"Attempt {attempt + 1} to download and load Kokoro model...") kokoro_dir = snapshot_download(kokoro_model_id, cache_dir=model_path) logger.info(f"Kokoro model directory: {kokoro_dir}") else: kokoro_dir = model_path logger.info(f"Using cached Kokoro model directory: {kokoro_dir}") # Validate ONNX file path onnx_path = None for root, _, files in os.walk(kokoro_dir): if 'model.onnx' in files: onnx_path = os.path.join(root, 'model.onnx') break if not onnx_path or not os.path.exists(onnx_path): raise FileNotFoundError(f"ONNX file not found after redownload at {kokoro_dir}") logger.info("Loading ONNX session...") sess = InferenceSession(onnx_path) logger.info(f"ONNX session loaded successfully from {onnx_path}") # Load the voice style vector voice_style_path = None for root, _, files in os.walk(kokoro_dir): if f'{voice_name}.bin' in files: voice_style_path = os.path.join(root, f'{voice_name}.bin') break if not voice_style_path or not os.path.exists(voice_style_path): raise FileNotFoundError(f"Voice style file not found at {voice_style_path}") logger.info("Loading voice style vector...") voice_style = np.fromfile(voice_style_path, dtype=np.float32).reshape(-1, 1, 256) logger.info(f"Voice style vector loaded successfully from {voice_style_path}") # Initialize Whisper model for S2T logger.info("Downloading and loading Whisper model...") processor = WhisperProcessor.from_pretrained("openai/whisper-base") whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base") whisper_model.config.forced_decoder_ids = None logger.info("Whisper model loaded successfully") # If everything succeeds, break out of the retry loop break except (RepositoryNotFoundError, HfHubHTTPError, FileNotFoundError) as e: logger.error(f"Attempt {attempt + 1} failed: {str(e)}") if attempt == max_retries - 1: logger.error("Max retries reached. Failed to initialize models.") raise # Re-raise the exception if max retries are reached time.sleep(retry_delay) retry_delay *= 2 # Exponential backoff # Initialize models initialize_models() # Health check endpoint @app.route('/health', methods=['GET']) def health_check(): try: return jsonify({"status": "healthy"}), 200 except Exception as e: logger.error(f"Health check failed: {str(e)}") return jsonify({"status": "unhealthy"}), 500 # Text-to-Speech (T2S) Endpoint @app.route('/generate_audio', methods=['POST']) def generate_audio(): """Text-to-Speech (T2S) Endpoint""" with global_lock: # Acquire global lock to ensure only one instance runs try: logger.debug("Received request to /generate_audio") data = request.json text = data['text'] output_dir = data.get('output_dir') validate_text_input(text) logger.debug(f"Text: {text}") if not output_dir: raise ValueError("Output directory is required but not provided") # Ensure output_dir is an absolute path and valid if not os.path.isabs(output_dir): raise ValueError("Output directory must be an absolute path") if not os.path.exists(output_dir): raise ValueError(f"Output directory does not exist: {output_dir}") # Generate a unique hash for the text text = preprocess_all(text) logger.debug(f"Processed Text {text}") text_hash = hashlib.sha256(text.encode('utf-8')).hexdigest() hashed_file_name = f"{text_hash}.wav" cached_file_path = os.path.join(output_dir, hashed_file_name) logger.debug(f"Generated hash for processed text: {text_hash}") logger.debug(f"Output directory: {output_dir}") logger.debug(f"Cached file path: {cached_file_path}") # Check if cached file exists if is_cached(cached_file_path): logger.info(f"Returning cached audio for text: {text}") return jsonify({"status": "success", "output_path": cached_file_path}) # Tokenize text logger.debug("Tokenizing text...") from kokoro import phonemize, tokenize # Import dynamically tokens = tokenize(phonemize(text, 'a')) logger.debug(f"Initial tokens: {tokens}") if len(tokens) > 510: logger.warning("Text too long; truncating to 510 tokens.") tokens = tokens[:510] tokens = [[0, *tokens, 0]] # Add pad tokens logger.debug(f"Final tokens: {tokens}") # Get style vector based on token length logger.debug("Fetching style vector...") ref_s = voice_style[len(tokens[0]) - 2] # Shape: (1, 256) logger.debug(f"Style vector shape: {ref_s.shape}") # Run ONNX inference logger.debug("Running ONNX inference...") audio = sess.run(None, dict( input_ids=np.array(tokens, dtype=np.int64), style=ref_s, speed=np.ones(1, dtype=np.float32), ))[0] logger.debug(f"Audio generated with shape: {audio.shape}") # Fix audio data for saving audio = np.squeeze(audio) # Remove extra dimension audio = audio.astype(np.float32) # Ensure correct data type # Save audio logger.debug(f"Saving audio to {cached_file_path}...") sf.write(cached_file_path, audio, 24000) # Save with 24 kHz sample rate logger.info(f"Audio saved successfully to {cached_file_path}") return jsonify({"status": "success", "output_path": cached_file_path}) except Exception as e: logger.error(f"Error generating audio: {str(e)}") return jsonify({"status": "error", "message": str(e)}), 500 # Speech-to-Text (S2T) Endpoint @app.route('/transcribe_audio', methods=['POST']) def transcribe_audio(): """Speech-to-Text (S2T) Endpoint""" with global_lock: # Acquire global lock to ensure only one instance runs audio_path = None try: logger.debug("Received request to /transcribe_audio") file = request.files['file'] validate_audio_file(file) # Generate a unique filename using uuid unique_filename = f"{uuid.uuid4().hex}_{file.filename}" audio_path = os.path.join("/tmp", unique_filename) file.save(audio_path) logger.debug(f"Audio file saved to {audio_path}") # Load and preprocess audio logger.debug("Processing audio for transcription...") audio_array, sampling_rate = librosa.load(audio_path, sr=16000) input_features = processor( audio_array, sampling_rate=sampling_rate, return_tensors="pt" ).input_features # Generate transcription logger.debug("Generating transcription...") predicted_ids = whisper_model.generate(input_features) transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] logger.info(f"Transcription: {transcription}") return jsonify({"status": "success", "transcription": transcription}) except Exception as e: logger.error(f"Error transcribing audio: {str(e)}") return jsonify({"status": "error", "message": str(e)}), 500 finally: # Ensure temporary file is removed if audio_path and os.path.exists(audio_path): os.remove(audio_path) logger.debug(f"Temporary file {audio_path} removed") @app.route('/files/', methods=['GET']) def serve_wav_file(filename): """ Serve a .wav file from the configured directory. Only serves files ending with '.wav'. """ # Ensure only .wav files are allowed if not filename.lower().endswith('.wav'): abort(400, "Only .wav files are allowed.") # Check if the file exists in the directory file_path = os.path.join(SERVE_DIR, filename) logger.debug(f"Looking for file at: {file_path}") if not os.path.isfile(file_path): logger.error(f"File not found: {file_path}") abort(404, "File not found.") # Serve the file return send_from_directory(SERVE_DIR, filename) # Error handlers @app.errorhandler(400) def bad_request(error): """Handle 400 errors.""" return {"error": "Bad Request", "message": str(error)}, 400 @app.errorhandler(404) def not_found(error): """Handle 404 errors.""" return {"error": "Not Found", "message": str(error)}, 404 @app.errorhandler(500) def internal_error(error): """Handle unexpected errors.""" return {"error": "Internal Server Error", "message": "An unexpected error occurred."}, 500 if __name__ == "__main__": app.run(host="0.0.0.0", port=7860)