Spaces:
Sleeping
Sleeping
File size: 28,393 Bytes
48c504d 3290a02 48c504d 3290a02 49ff1ff 48c504d 257796c 48c504d 3290a02 48c504d 49ff1ff 3290a02 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c 48c504d 257796c f5dbd81 48c504d 49ff1ff 3290a02 257796c 48c504d 257796c 48c504d f5dbd81 7383a6e 3290a02 48c504d e19b8c2 48c504d f5dbd81 3290a02 f5dbd81 48c504d e19b8c2 48c504d 1b49e7c 48c504d f5dbd81 48c504d 257796c 49ff1ff 385a63a 257796c 385a63a 257796c 48c504d 257796c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 |
import os
import re
import json
import requests
import tempfile
import random
import math
import numpy as np
import torch
import time
from bs4 import BeautifulSoup
from typing import List, Literal, Optional
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import tiktoken
from groq import Groq
import streamlit as st # If you use Streamlit for session state
from report_structure import generate_report # Your PDF generator
from tavily import TavilyClient # For search
###############################################################################
# DATA MODELS
###############################################################################
class DialogueItem(BaseModel):
speaker: Literal["Jane", "John"]
display_speaker: str = "Jane"
text: str
class Dialogue(BaseModel):
dialogue: List[DialogueItem]
###############################################################################
# HYBRID RATE-LIMIT HANDLER
###############################################################################
def call_llm_with_retry(groq_client, **payload):
"""
Wraps groq_client.chat.completions.create(**payload) in a retry loop
to catch rate-limit errors or service unavailable (503) errors.
If we see “try again in XXs,” or detect a 503 error, we parse the wait time,
sleep, then retry. We also do a short sleep (0.3s) after each successful call.
"""
max_retries = 3
for attempt in range(max_retries):
try:
print(f"[DEBUG] call_llm_with_retry attempt {attempt+1}")
response = groq_client.chat.completions.create(**payload)
# Short sleep to avoid bursting usage
time.sleep(0.3)
print("[DEBUG] LLM call succeeded, returning response.")
return response
except Exception as e:
err_str = str(e).lower()
print(f"[WARN] call_llm_with_retry attempt {attempt+1} failed: {e}")
if ("rate_limit_exceeded" in err_str or "try again in" in err_str or "503" in err_str):
wait_time = 60.0
match = re.search(r'try again in (\d+(?:\.\d+)?)s', str(e), re.IGNORECASE)
if match:
wait_time = float(match.group(1)) + 1.0
elif "503" in err_str:
wait_time = 60.0
print(f"[WARN] Detected error (rate limit or 503). Sleeping for {wait_time:.1f}s, then retrying.")
time.sleep(wait_time)
else:
raise
raise RuntimeError("Exceeded max_retries due to repeated rate limit or other errors.")
###############################################################################
# TRUNCATION
###############################################################################
def truncate_text_tokens(text: str, max_tokens: int) -> str:
"""
Truncates 'text' to 'max_tokens' tokens. Used for controlling maximum
total text size after scraping.
"""
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(text)
if len(tokens) > max_tokens:
truncated = tokenizer.decode(tokens[:max_tokens])
print(f"[DEBUG] Truncating from {len(tokens)} tokens to {max_tokens} tokens.")
return truncated
return text
def truncate_text_for_llm(text: str, max_tokens: int = 1024) -> str:
"""
Typical truncation for partial merges or final calls.
"""
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(text)
if len(tokens) > max_tokens:
truncated = tokenizer.decode(tokens[:max_tokens])
print(f"[DEBUG] Truncating text from {len(tokens)} to {max_tokens} tokens for LLM.")
return truncated
return text
###############################################################################
# PITCH SHIFT (Optional)
###############################################################################
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
print(f"[LOG] Shifting pitch by {semitones} semitones.")
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
return shifted_audio.set_frame_rate(audio.frame_rate)
###############################################################################
# PODCAST SCRIPT GENERATION (Single Call)
###############################################################################
def generate_script(
system_prompt: str,
input_text: str,
tone: str,
target_length: str,
host_name: str = "Jane",
guest_name: str = "John",
sponsor_style: str = "Separate Break",
sponsor_provided=None
):
"""
If you do a single call to generate the entire script.
Uses DEEPSEEK_R1. Just ensure you parse the JSON.
"""
print("[LOG] Generating script with tone:", tone, "and length:", target_length)
language_selection = st.session_state.get("language_selection", "English (American)")
if (host_name == "Jane" or not host_name) and language_selection in ["English (Indian)", "Hinglish", "Hindi"]:
host_name = "Isha"
if (guest_name == "John" or not guest_name) and language_selection in ["English (Indian)", "Hinglish", "Hindi"]:
guest_name = "Aarav"
words_per_minute = 150
numeric_minutes = 3
match = re.search(r"(\d+)", target_length)
if match:
numeric_minutes = int(match.group(1))
min_words = max(50, numeric_minutes * 100)
max_words = numeric_minutes * words_per_minute
tone_map = {
"Humorous": "funny and exciting, makes people chuckle",
"Formal": "business-like, well-structured, professional",
"Casual": "like a conversation between close friends, relaxed and informal",
"Youthful": "like how teenagers might chat, energetic and lively"
}
chosen_tone = tone_map.get(tone, "casual")
if sponsor_provided:
if sponsor_style == "Separate Break":
sponsor_instructions = (
"If sponsor content is provided, include it in a separate ad break (~30 seconds). "
"Use 'Now a word from our sponsor...' and end with 'Back to the show', etc."
)
else:
sponsor_instructions = (
"If sponsor content is provided, blend it naturally (~30 seconds) into conversation. "
"Avoid abrupt transitions."
)
else:
sponsor_instructions = ""
prompt = (
f"{system_prompt}\n"
f"TONE: {chosen_tone}\n"
f"TARGET LENGTH: {target_length} (~{min_words}-{max_words} words)\n"
f"INPUT TEXT: {input_text}\n\n"
f"# Sponsor Style Instruction:\n{sponsor_instructions}\n\n"
"Please provide the output in the following JSON format without any extra text:\n"
"{\n"
' "dialogue": [\n'
' { "speaker": "Jane", "text": "..." },\n'
' { "speaker": "John", "text": "..." }\n'
" ]\n"
"}"
)
if language_selection == "Hinglish":
prompt += "\n\nPlease generate the script in Romanized Hindi.\n"
elif language_selection == "Hindi":
prompt += "\n\nPlease generate the script exclusively in Hindi.\n"
print("[LOG] Sending script generation prompt to LLM.")
try:
headers = {
"Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
"Content-Type": "application/json"
}
data = {
"model": "deepseek/deepseek-r1",
"messages": [{"role": "user", "content": prompt}],
"max_tokens": 2048,
"temperature": 0.7
}
resp = requests.post("https://openrouter.ai/api/v1/chat/completions",
headers=headers, data=json.dumps(data))
resp.raise_for_status()
raw_content = resp.json()["choices"][0]["message"]["content"].strip()
except Exception as e:
print("[ERROR] LLM error generating script:", e)
raise ValueError(f"Error generating script: {str(e)}")
start_idx = raw_content.find("{")
end_idx = raw_content.rfind("}")
if start_idx == -1 or end_idx == -1:
raise ValueError("No JSON found in LLM response for script generation.")
json_str = raw_content[start_idx:end_idx+1]
try:
data_js = json.loads(json_str)
dialogue_list = data_js.get("dialogue", [])
# Adjust speaker names if they match
for d in dialogue_list:
raw_speaker = d.get("speaker", "Jane")
if raw_speaker.lower() == host_name.lower():
d["speaker"] = "Jane"
d["display_speaker"] = host_name
elif raw_speaker.lower() == guest_name.lower():
d["speaker"] = "John"
d["display_speaker"] = guest_name
else:
d["speaker"] = "Jane"
d["display_speaker"] = raw_speaker
new_dialogue_items = []
for d in dialogue_list:
if "display_speaker" not in d:
d["display_speaker"] = d["speaker"]
new_dialogue_items.append(DialogueItem(**d))
return Dialogue(dialogue=new_dialogue_items)
except json.JSONDecodeError as e:
print("[ERROR] JSON decoding failed for script generation:", e)
raise ValueError(f"Script parse error: {str(e)}")
except Exception as e:
print("[ERROR] Unknown error parsing script JSON:", e)
raise ValueError(f"Script parse error: {str(e)}")
###############################################################################
# YOUTUBE TRANSCRIPTION (RAPIDAPI)
###############################################################################
def transcribe_youtube_video(video_url: str) -> str:
print("[LOG] Transcribing YouTube video:", video_url)
match = re.search(r"(?:v=|/)([0-9A-Za-z_-]{11})", video_url)
if not match:
raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")
video_id = match.group(1)
print("[LOG] Extracted video ID:", video_id)
base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
params = {"video_id": video_id, "lang": "en"}
headers = {
"x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
"x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
}
try:
resp = requests.get(base_url, headers=headers, params=params, timeout=30)
resp.raise_for_status()
data = resp.json()
if not isinstance(data, list) or not data:
raise ValueError(f"Unexpected transcript format or empty transcript: {data}")
transcript_as_text = data[0].get("transcriptionAsText", "").strip()
if not transcript_as_text:
raise ValueError("transcriptionAsText missing or empty in RapidAPI response.")
print("[LOG] Transcript retrieval successful. Sample:", transcript_as_text[:200], "...")
return transcript_as_text
except Exception as e:
print("[ERROR] YouTube transcription error:", e)
raise ValueError(f"Error transcribing YouTube video: {str(e)}")
###############################################################################
# AUDIO GENERATION (TTS) AND BG MUSIC MIX
###############################################################################
def _preprocess_text_for_tts(text: str, speaker: str) -> str:
text = re.sub(r"\bNo\.\b", "Number", text, flags=re.IGNORECASE)
text = re.sub(r"\b(?i)SaaS\b", "sass", text)
abbreviations_as_words = {"NASA", "NATO", "UNESCO"}
def insert_periods_for_abbrev(m):
abbr = m.group(0)
if abbr in abbreviations_as_words:
return abbr
return ".".join(list(abbr)) + "."
text = re.sub(r"\b([A-Z]{2,})\b", insert_periods_for_abbrev, text)
text = re.sub(r"\.\.", ".", text)
def remove_periods_for_tts(m):
return m.group().replace(".", " ").strip()
text = re.sub(r"[A-Z]\.[A-Z](?:\.[A-Z])*\.", remove_periods_for_tts, text)
text = re.sub(r"-", " ", text)
text = re.sub(r"\b(ha(ha)?|heh|lol)\b", "(* laughs *)", text, flags=re.IGNORECASE)
text = re.sub(r"\bsigh\b", "(* sighs *)", text, flags=re.IGNORECASE)
text = re.sub(r"\b(groan|moan)\b", "(* groans *)", text, flags=re.IGNORECASE)
if speaker != "Jane":
def insert_thinking_pause(m):
wd = m.group(1)
if random.random() < 0.3:
filler = random.choice(["hmm,", "well,", "let me see,"])
return f"{wd}..., {filler}"
else:
return f"{wd}...,"
keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
conj_pattern = r"\b(and|but|so|because|however)\b"
text = re.sub(conj_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)
text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)
def capitalize_after_sentence(m):
return m.group().upper()
text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_after_sentence, text)
return text.strip()
def generate_audio_mp3(text: str, speaker: str) -> str:
"""
Uses Deepgram (English) or Murf (Indian/Hinglish/Hindi) for TTS.
"""
print(f"[LOG] Generating TTS for speaker={speaker}")
language_selection = st.session_state.get("language_selection", "English (American)")
try:
if language_selection == "English (American)":
print("[LOG] Using Deepgram for American English TTS.")
processed_text = text if speaker in ["Jane", "John"] else _preprocess_text_for_tts(text, speaker)
deepgram_api_url = "https://api.deepgram.com/v1/speak"
params = {"model": "aura-asteria-en"} if speaker != "John" else {"model": "aura-zeus-en"}
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
}
body = {"text": processed_text}
r = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
r.raise_for_status()
content_type = r.headers.get("Content-Type", "")
if "audio/mpeg" not in content_type:
raise ValueError("Unexpected content-type from Deepgram TTS.")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
mp3_file.write(chunk)
mp3_path = mp3_file.name
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
audio_seg = effects.normalize(audio_seg)
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
audio_seg.export(final_mp3_path, format="mp3")
if os.path.exists(mp3_path):
os.remove(mp3_path)
return final_mp3_path
else:
print("[LOG] Using Murf API for TTS. Language=", language_selection)
from indic_transliteration.sanscript import transliterate, DEVANAGARI, IAST
if language_selection == "Hinglish":
text = transliterate(text, DEVANAGARI, IAST)
api_key = os.environ.get("MURF_API_KEY")
headers = {
"Content-Type": "application/json",
"Accept": "application/json",
"api-key": api_key
}
multi_native_locale = "hi-IN" if language_selection in ["Hinglish", "Hindi"] else "en-IN"
if language_selection == "English (Indian)":
voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
elif language_selection in ["Hindi", "Hinglish"]:
voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
else:
voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
payload = {
"audioDuration": 0,
"channelType": "MONO",
"encodeAsBase64": False,
"format": "WAV",
"modelVersion": "GEN2",
"multiNativeLocale": multi_native_locale,
"pitch": 0,
"pronunciationDictionary": {},
"rate": 0,
"sampleRate": 48000,
"style": "Conversational",
"text": text,
"variation": 1,
"voiceId": voice_id
}
r = requests.post("https://api.murf.ai/v1/speech/generate", headers=headers, json=payload)
r.raise_for_status()
j = r.json()
audio_url = j.get("audioFile")
if not audio_url:
raise ValueError("No audioFile URL from Murf API.")
audio_resp = requests.get(audio_url)
audio_resp.raise_for_status()
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as wav_file:
wav_file.write(audio_resp.content)
wav_path = wav_file.name
audio_seg = AudioSegment.from_file(wav_path, format="wav")
audio_seg = effects.normalize(audio_seg)
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
audio_seg.export(final_mp3_path, format="mp3")
os.remove(wav_path)
return final_mp3_path
except Exception as e:
print("[ERROR] TTS generation error:", e)
raise ValueError(f"Error generating TTS audio: {str(e)}")
def mix_with_bg_music(spoken: AudioSegment, custom_music_path=None) -> AudioSegment:
"""
Overlays 'spoken' with background music, offset by ~2s, volume lowered.
"""
if custom_music_path:
music_path = custom_music_path
else:
music_path = "bg_music.mp3"
try:
bg_music = AudioSegment.from_file(music_path, format="mp3")
except Exception as e:
print("[ERROR] Failed to load background music:", e)
return spoken
bg_music = bg_music - 18.0
total_length_ms = len(spoken) + 2000
looped_music = AudioSegment.empty()
while len(looped_music) < total_length_ms:
looped_music += bg_music
looped_music = looped_music[:total_length_ms]
final_mix = looped_music.overlay(spoken, position=2000)
return final_mix
###############################################################################
# Q&A UTILITY (POST-PODCAST)
###############################################################################
def call_groq_api_for_qa(system_prompt: str) -> str:
"""
Single-step Q&A for post-podcast. Usually short usage => minimal tokens.
"""
try:
headers = {
"Authorization": f"Bearer {os.environ.get('GROQ_API_KEY')}",
"Content-Type": "application/json",
"Accept": "application/json"
}
data = {
"model": "deepseek-r1-distill-llama-70b",
"messages": [{"role": "user", "content": system_prompt}],
"max_tokens": 512,
"temperature": 0.7
}
r = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, data=json.dumps(data))
r.raise_for_status()
return r.json()["choices"][0]["message"]["content"].strip()
except Exception as e:
print("[ERROR] Groq QA error:", e)
fallback = {"speaker": "John", "text": "Sorry, I'm having trouble answering now."}
return json.dumps(fallback)
###############################################################################
# ITERATIVE MERGING HELPER FUNCTION (BATCH PROCESSING STRATEGY)
###############################################################################
def iterative_merge_summaries(summaries: List[str], groq_client, references_text: str) -> str:
"""
Iteratively merge a list of summaries into one final report summary.
This function groups summaries into batches whose total token count is below a set threshold,
merges each batch, and then recursively merges the batch outputs until only one final summary remains.
"""
tokenizer = tiktoken.get_encoding("cl100k_base")
max_merge_input_tokens = 2000 # Set a safe threshold for each merge call
round_index = 1
while len(summaries) > 1:
print(f"[LOG] Iterative merging round {round_index}: {len(summaries)} summaries to merge.")
new_summaries = []
i = 0
while i < len(summaries):
batch = []
batch_tokens = 0
# Group summaries until the token count exceeds threshold
while i < len(summaries):
summary = summaries[i]
summary_tokens = len(tokenizer.encode(summary))
if batch_tokens + summary_tokens <= max_merge_input_tokens or not batch:
batch.append(summary)
batch_tokens += summary_tokens
i += 1
else:
break
batch_text = "\n\n".join(batch)
merge_prompt = f"""
You are a specialized summarization engine. Merge the following summaries into one comprehensive summary.
Summaries:
{batch_text}
References (if any):
{references_text}
Please output the merged summary.
"""
data = {
"model": MODEL_COMBINATION,
"messages": [{"role": "user", "content": merge_prompt}],
"temperature": 0.3,
"max_tokens": 4096
}
merge_response = call_llm_with_retry(groq_client, **data)
merged_batch = merge_response.choices[0].message.content.strip()
merged_batch = re.sub(r"<think>.*?</think>", "", merged_batch, flags=re.DOTALL).strip()
new_summaries.append(merged_batch)
summaries = new_summaries
round_index += 1
return summaries[0]
###############################################################################
# LOW-CALL RESEARCH AGENT (Minimizing LLM Calls)
###############################################################################
MODEL_SUMMARIZATION = "llama-3.1-8b-instant"
MODEL_COMBINATION = "deepseek-r1-distill-llama-70b"
def run_research_agent(
topic: str,
report_type: str = "research_report",
max_results: int = 20
) -> str:
"""
Low-Call approach:
1) Tavily search (up to 20 URLs).
2) Firecrawl scrape => combined text.
3) Use the full combined text without truncation.
4) Split into chunks (each 4500 tokens) => Summarize each chunk individually => summaries.
5) Iteratively merge the summaries into a final report.
If the report output is incomplete, the model will output "CONTINUE" so that additional calls
can be made to retrieve the rest of the report.
=> 2 or more total LLM calls (but no more than 10) to reduce the chance of rate limit errors.
"""
print(f"[LOG] Starting LOW-CALL research agent for topic: {topic}")
try:
# Step 1: Tavily search
print("[LOG] Step 1: Searching with Tavily for relevant URLs (max_results=20).")
tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))
search_data = tavily_client.search(query=topic, max_results=max_results)
search_results = search_data.get("results", [])
print(f"[LOG] Tavily provided {len(search_results)} results. Proceeding to Step 2.")
if not search_results:
print("[LOG] No relevant search results found by Tavily.")
return "No relevant search results found."
references_list = [r["url"] for r in search_results if "url" in r]
# Step 2: Firecrawl scraping
print("[LOG] Step 2: Scraping each URL with Firecrawl.")
combined_content = ""
for result in search_results:
url = result["url"]
print(f"[LOG] Firecrawl scraping: {url}")
headers = {'Authorization': f'Bearer {os.environ.get("FIRECRAWL_API_KEY")}'}
payload = {"url": url, "formats": ["markdown"], "onlyMainContent": True}
try:
resp = requests.post("https://api.firecrawl.dev/v1/scrape", headers=headers, json=payload)
resp.raise_for_status()
data = resp.json()
if data.get("success") and "markdown" in data.get("data", {}):
combined_content += data["data"]["markdown"] + "\n\n"
else:
print(f"[WARNING] Firecrawl scrape failed or no markdown for {url}: {data.get('error')}")
except requests.RequestException as e:
print(f"[ERROR] Firecrawl error for {url}: {e}")
continue
if not combined_content:
print("[LOG] Could not retrieve content from any search results. Exiting.")
return "Could not retrieve content from any of the search results."
# Step 2.5: Input Sanitization - Remove any chain-of-thought markers.
combined_content = re.sub(r"<think>.*?</think>", "", combined_content, flags=re.DOTALL)
# Step 3: Use the full combined text without truncation.
tokenizer = tiktoken.get_encoding("cl100k_base")
total_tokens = len(tokenizer.encode(combined_content))
print(f"[LOG] Step 3: Using the full combined text without truncation. Total tokens: {total_tokens}")
# Step 4: Splitting text into chunks (4500 tokens each) and summarizing each chunk.
tokens = tokenizer.encode(combined_content)
chunk_size = 4500 # Each chunk is 4500 tokens or less.
total_chunks = math.ceil(len(tokens) / chunk_size)
print(f"[LOG] Step 4: Splitting text into chunks of up to 4500 tokens. Total chunks: {total_chunks}")
max_chunks = 10 # Allow up to 10 chunks.
summaries = []
start = 0
chunk_index = 1
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
while start < len(tokens) and chunk_index <= max_chunks:
end = min(start + chunk_size, len(tokens))
chunk_text = tokenizer.decode(tokens[start:end])
print(f"[LOG] Summarizing chunk {chunk_index} with ~{len(tokens[start:end])} tokens.")
prompt = f"""
You are a specialized summarization engine. Summarize the following text
for a professional research report. Provide accurate details but do not
include chain-of-thought or internal reasoning. Keep it concise, but
include key data points and context:
{chunk_text}
"""
data = {
"model": MODEL_SUMMARIZATION,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.2,
"max_tokens": 768
}
response = call_llm_with_retry(groq_client, **data)
summary_text = response.choices[0].message.content.strip()
summaries.append(summary_text)
start = end
chunk_index += 1
# Step 5: Iteratively merge the chunk summaries.
print("[LOG] Step 5: Iteratively merging chunk summaries.")
references_text = "\n".join(f"- {url}" for url in references_list) if references_list else "None"
final_text = iterative_merge_summaries(summaries, groq_client, references_text)
# --- NEW POST-PROCESSING STEP ---
# Remove any lingering chain-of-thought markers.
final_text = re.sub(r"<think>.*?</think>", "", final_text, flags=re.DOTALL).strip()
# ------------------------------
# Step 6: PDF generation
print("[LOG] Step 6: Generating final PDF from the merged text.")
final_report = generate_report(final_text)
print("[LOG] Done! Returning PDF from run_research_agent (low-call).")
return final_report
except Exception as e:
print(f"[ERROR] Error in run_research_agent: {e}")
return f"Sorry, encountered an error: {str(e)}" |