File size: 28,393 Bytes
48c504d
 
 
 
 
 
3290a02
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3290a02
 
49ff1ff
48c504d
 
 
 
 
 
257796c
48c504d
 
 
 
 
 
3290a02
48c504d
 
 
 
49ff1ff
 
3290a02
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
257796c
 
 
 
 
 
 
 
 
 
48c504d
257796c
 
48c504d
257796c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c504d
 
 
257796c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48c504d
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
257796c
48c504d
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257796c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5dbd81
 
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
49ff1ff
3290a02
 
257796c
 
 
 
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
257796c
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5dbd81
7383a6e
 
3290a02
 
 
 
48c504d
e19b8c2
48c504d
f5dbd81
3290a02
 
f5dbd81
48c504d
 
 
e19b8c2
 
 
 
48c504d
 
 
 
 
 
1b49e7c
 
48c504d
 
 
 
 
 
 
 
 
 
 
 
 
 
f5dbd81
 
48c504d
257796c
49ff1ff
385a63a
257796c
 
385a63a
 
257796c
 
48c504d
 
 
 
 
 
 
257796c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
import os
import re
import json
import requests
import tempfile
import random
import math
import numpy as np
import torch
import time

from bs4 import BeautifulSoup
from typing import List, Literal, Optional
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import tiktoken
from groq import Groq

import streamlit as st  # If you use Streamlit for session state

from report_structure import generate_report  # Your PDF generator
from tavily import TavilyClient  # For search


###############################################################################
#                                DATA MODELS
###############################################################################

class DialogueItem(BaseModel):
    speaker: Literal["Jane", "John"]
    display_speaker: str = "Jane"
    text: str

class Dialogue(BaseModel):
    dialogue: List[DialogueItem]


###############################################################################
#                            HYBRID RATE-LIMIT HANDLER
###############################################################################

def call_llm_with_retry(groq_client, **payload):
    """
    Wraps groq_client.chat.completions.create(**payload) in a retry loop
    to catch rate-limit errors or service unavailable (503) errors.
    If we see “try again in XXs,” or detect a 503 error, we parse the wait time,
    sleep, then retry. We also do a short sleep (0.3s) after each successful call.
    """
    max_retries = 3
    for attempt in range(max_retries):
        try:
            print(f"[DEBUG] call_llm_with_retry attempt {attempt+1}")
            response = groq_client.chat.completions.create(**payload)
            # Short sleep to avoid bursting usage
            time.sleep(0.3)
            print("[DEBUG] LLM call succeeded, returning response.")
            return response
        except Exception as e:
            err_str = str(e).lower()
            print(f"[WARN] call_llm_with_retry attempt {attempt+1} failed: {e}")
            if ("rate_limit_exceeded" in err_str or "try again in" in err_str or "503" in err_str):
                wait_time = 60.0
                match = re.search(r'try again in (\d+(?:\.\d+)?)s', str(e), re.IGNORECASE)
                if match:
                    wait_time = float(match.group(1)) + 1.0
                elif "503" in err_str:
                    wait_time = 60.0
                print(f"[WARN] Detected error (rate limit or 503). Sleeping for {wait_time:.1f}s, then retrying.")
                time.sleep(wait_time)
            else:
                raise
    raise RuntimeError("Exceeded max_retries due to repeated rate limit or other errors.")


###############################################################################
#                                TRUNCATION
###############################################################################

def truncate_text_tokens(text: str, max_tokens: int) -> str:
    """
    Truncates 'text' to 'max_tokens' tokens. Used for controlling maximum
    total text size after scraping.
    """
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(text)
    if len(tokens) > max_tokens:
        truncated = tokenizer.decode(tokens[:max_tokens])
        print(f"[DEBUG] Truncating from {len(tokens)} tokens to {max_tokens} tokens.")
        return truncated
    return text

def truncate_text_for_llm(text: str, max_tokens: int = 1024) -> str:
    """
    Typical truncation for partial merges or final calls.
    """
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(text)
    if len(tokens) > max_tokens:
        truncated = tokenizer.decode(tokens[:max_tokens])
        print(f"[DEBUG] Truncating text from {len(tokens)} to {max_tokens} tokens for LLM.")
        return truncated
    return text


###############################################################################
#                         PITCH SHIFT (Optional)
###############################################################################

def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
    print(f"[LOG] Shifting pitch by {semitones} semitones.")
    new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
    shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
    return shifted_audio.set_frame_rate(audio.frame_rate)


###############################################################################
#                      PODCAST SCRIPT GENERATION (Single Call)
###############################################################################

def generate_script(
    system_prompt: str,
    input_text: str,
    tone: str,
    target_length: str,
    host_name: str = "Jane",
    guest_name: str = "John",
    sponsor_style: str = "Separate Break",
    sponsor_provided=None
):
    """
    If you do a single call to generate the entire script.
    Uses DEEPSEEK_R1. Just ensure you parse the JSON.
    """
    print("[LOG] Generating script with tone:", tone, "and length:", target_length)

    language_selection = st.session_state.get("language_selection", "English (American)")
    if (host_name == "Jane" or not host_name) and language_selection in ["English (Indian)", "Hinglish", "Hindi"]:
        host_name = "Isha"
    if (guest_name == "John" or not guest_name) and language_selection in ["English (Indian)", "Hinglish", "Hindi"]:
        guest_name = "Aarav"

    words_per_minute = 150
    numeric_minutes = 3
    match = re.search(r"(\d+)", target_length)
    if match:
        numeric_minutes = int(match.group(1))

    min_words = max(50, numeric_minutes * 100)
    max_words = numeric_minutes * words_per_minute

    tone_map = {
        "Humorous": "funny and exciting, makes people chuckle",
        "Formal": "business-like, well-structured, professional",
        "Casual": "like a conversation between close friends, relaxed and informal",
        "Youthful": "like how teenagers might chat, energetic and lively"
    }
    chosen_tone = tone_map.get(tone, "casual")

    if sponsor_provided:
        if sponsor_style == "Separate Break":
            sponsor_instructions = (
                "If sponsor content is provided, include it in a separate ad break (~30 seconds). "
                "Use 'Now a word from our sponsor...' and end with 'Back to the show', etc."
            )
        else:
            sponsor_instructions = (
                "If sponsor content is provided, blend it naturally (~30 seconds) into conversation. "
                "Avoid abrupt transitions."
            )
    else:
        sponsor_instructions = ""

    prompt = (
        f"{system_prompt}\n"
        f"TONE: {chosen_tone}\n"
        f"TARGET LENGTH: {target_length} (~{min_words}-{max_words} words)\n"
        f"INPUT TEXT: {input_text}\n\n"
        f"# Sponsor Style Instruction:\n{sponsor_instructions}\n\n"
        "Please provide the output in the following JSON format without any extra text:\n"
        "{\n"
        '   "dialogue": [\n'
        '     { "speaker": "Jane", "text": "..." },\n'
        '     { "speaker": "John", "text": "..." }\n'
        "   ]\n"
        "}"
    )
    if language_selection == "Hinglish":
        prompt += "\n\nPlease generate the script in Romanized Hindi.\n"
    elif language_selection == "Hindi":
        prompt += "\n\nPlease generate the script exclusively in Hindi.\n"

    print("[LOG] Sending script generation prompt to LLM.")
    try:
        headers = {
            "Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
            "Content-Type": "application/json"
        }
        data = {
            "model": "deepseek/deepseek-r1",
            "messages": [{"role": "user", "content": prompt}],
            "max_tokens": 2048,
            "temperature": 0.7
        }
        resp = requests.post("https://openrouter.ai/api/v1/chat/completions",
                             headers=headers, data=json.dumps(data))
        resp.raise_for_status()
        raw_content = resp.json()["choices"][0]["message"]["content"].strip()
    except Exception as e:
        print("[ERROR] LLM error generating script:", e)
        raise ValueError(f"Error generating script: {str(e)}")

    start_idx = raw_content.find("{")
    end_idx = raw_content.rfind("}")
    if start_idx == -1 or end_idx == -1:
        raise ValueError("No JSON found in LLM response for script generation.")

    json_str = raw_content[start_idx:end_idx+1]
    try:
        data_js = json.loads(json_str)
        dialogue_list = data_js.get("dialogue", [])

        # Adjust speaker names if they match
        for d in dialogue_list:
            raw_speaker = d.get("speaker", "Jane")
            if raw_speaker.lower() == host_name.lower():
                d["speaker"] = "Jane"
                d["display_speaker"] = host_name
            elif raw_speaker.lower() == guest_name.lower():
                d["speaker"] = "John"
                d["display_speaker"] = guest_name
            else:
                d["speaker"] = "Jane"
                d["display_speaker"] = raw_speaker

        new_dialogue_items = []
        for d in dialogue_list:
            if "display_speaker" not in d:
                d["display_speaker"] = d["speaker"]
            new_dialogue_items.append(DialogueItem(**d))

        return Dialogue(dialogue=new_dialogue_items)

    except json.JSONDecodeError as e:
        print("[ERROR] JSON decoding failed for script generation:", e)
        raise ValueError(f"Script parse error: {str(e)}")
    except Exception as e:
        print("[ERROR] Unknown error parsing script JSON:", e)
        raise ValueError(f"Script parse error: {str(e)}")


###############################################################################
#                      YOUTUBE TRANSCRIPTION (RAPIDAPI)
###############################################################################

def transcribe_youtube_video(video_url: str) -> str:
    print("[LOG] Transcribing YouTube video:", video_url)
    match = re.search(r"(?:v=|/)([0-9A-Za-z_-]{11})", video_url)
    if not match:
        raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")
    video_id = match.group(1)
    print("[LOG] Extracted video ID:", video_id)

    base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
    params = {"video_id": video_id, "lang": "en"}
    headers = {
        "x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
        "x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
    }
    try:
        resp = requests.get(base_url, headers=headers, params=params, timeout=30)
        resp.raise_for_status()
        data = resp.json()
        if not isinstance(data, list) or not data:
            raise ValueError(f"Unexpected transcript format or empty transcript: {data}")

        transcript_as_text = data[0].get("transcriptionAsText", "").strip()
        if not transcript_as_text:
            raise ValueError("transcriptionAsText missing or empty in RapidAPI response.")

        print("[LOG] Transcript retrieval successful. Sample:", transcript_as_text[:200], "...")
        return transcript_as_text
    except Exception as e:
        print("[ERROR] YouTube transcription error:", e)
        raise ValueError(f"Error transcribing YouTube video: {str(e)}")


###############################################################################
#                  AUDIO GENERATION (TTS) AND BG MUSIC MIX
###############################################################################

def _preprocess_text_for_tts(text: str, speaker: str) -> str:
    text = re.sub(r"\bNo\.\b", "Number", text, flags=re.IGNORECASE)
    text = re.sub(r"\b(?i)SaaS\b", "sass", text)

    abbreviations_as_words = {"NASA", "NATO", "UNESCO"}
    def insert_periods_for_abbrev(m):
        abbr = m.group(0)
        if abbr in abbreviations_as_words:
            return abbr
        return ".".join(list(abbr)) + "."

    text = re.sub(r"\b([A-Z]{2,})\b", insert_periods_for_abbrev, text)
    text = re.sub(r"\.\.", ".", text)

    def remove_periods_for_tts(m):
        return m.group().replace(".", " ").strip()

    text = re.sub(r"[A-Z]\.[A-Z](?:\.[A-Z])*\.", remove_periods_for_tts, text)
    text = re.sub(r"-", " ", text)
    text = re.sub(r"\b(ha(ha)?|heh|lol)\b", "(* laughs *)", text, flags=re.IGNORECASE)
    text = re.sub(r"\bsigh\b", "(* sighs *)", text, flags=re.IGNORECASE)
    text = re.sub(r"\b(groan|moan)\b", "(* groans *)", text, flags=re.IGNORECASE)

    if speaker != "Jane":
        def insert_thinking_pause(m):
            wd = m.group(1)
            if random.random() < 0.3:
                filler = random.choice(["hmm,", "well,", "let me see,"])
                return f"{wd}..., {filler}"
            else:
                return f"{wd}...,"
        keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
        text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
        conj_pattern = r"\b(and|but|so|because|however)\b"
        text = re.sub(conj_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)

    text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)

    def capitalize_after_sentence(m):
        return m.group().upper()

    text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_after_sentence, text)
    return text.strip()

def generate_audio_mp3(text: str, speaker: str) -> str:
    """
    Uses Deepgram (English) or Murf (Indian/Hinglish/Hindi) for TTS.
    """
    print(f"[LOG] Generating TTS for speaker={speaker}")
    language_selection = st.session_state.get("language_selection", "English (American)")
    try:
        if language_selection == "English (American)":
            print("[LOG] Using Deepgram for American English TTS.")
            processed_text = text if speaker in ["Jane", "John"] else _preprocess_text_for_tts(text, speaker)
            deepgram_api_url = "https://api.deepgram.com/v1/speak"
            params = {"model": "aura-asteria-en"} if speaker != "John" else {"model": "aura-zeus-en"}
            headers = {
                "Accept": "audio/mpeg",
                "Content-Type": "application/json",
                "Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
            }
            body = {"text": processed_text}
            r = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
            r.raise_for_status()

            content_type = r.headers.get("Content-Type", "")
            if "audio/mpeg" not in content_type:
                raise ValueError("Unexpected content-type from Deepgram TTS.")
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
                for chunk in r.iter_content(chunk_size=8192):
                    if chunk:
                        mp3_file.write(chunk)
                mp3_path = mp3_file.name

            audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
            audio_seg = effects.normalize(audio_seg)
            final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
            audio_seg.export(final_mp3_path, format="mp3")
            if os.path.exists(mp3_path):
                os.remove(mp3_path)
            return final_mp3_path

        else:
            print("[LOG] Using Murf API for TTS. Language=", language_selection)
            from indic_transliteration.sanscript import transliterate, DEVANAGARI, IAST
            if language_selection == "Hinglish":
                text = transliterate(text, DEVANAGARI, IAST)
            api_key = os.environ.get("MURF_API_KEY")
            headers = {
                "Content-Type": "application/json",
                "Accept": "application/json",
                "api-key": api_key
            }
            multi_native_locale = "hi-IN" if language_selection in ["Hinglish", "Hindi"] else "en-IN"
            if language_selection == "English (Indian)":
                voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
            elif language_selection in ["Hindi", "Hinglish"]:
                voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
            else:
                voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"

            payload = {
                "audioDuration": 0,
                "channelType": "MONO",
                "encodeAsBase64": False,
                "format": "WAV",
                "modelVersion": "GEN2",
                "multiNativeLocale": multi_native_locale,
                "pitch": 0,
                "pronunciationDictionary": {},
                "rate": 0,
                "sampleRate": 48000,
                "style": "Conversational",
                "text": text,
                "variation": 1,
                "voiceId": voice_id
            }
            r = requests.post("https://api.murf.ai/v1/speech/generate", headers=headers, json=payload)
            r.raise_for_status()
            j = r.json()
            audio_url = j.get("audioFile")
            if not audio_url:
                raise ValueError("No audioFile URL from Murf API.")
            audio_resp = requests.get(audio_url)
            audio_resp.raise_for_status()

            with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as wav_file:
                wav_file.write(audio_resp.content)
                wav_path = wav_file.name

            audio_seg = AudioSegment.from_file(wav_path, format="wav")
            audio_seg = effects.normalize(audio_seg)
            final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
            audio_seg.export(final_mp3_path, format="mp3")
            os.remove(wav_path)
            return final_mp3_path
    except Exception as e:
        print("[ERROR] TTS generation error:", e)
        raise ValueError(f"Error generating TTS audio: {str(e)}")

def mix_with_bg_music(spoken: AudioSegment, custom_music_path=None) -> AudioSegment:
    """
    Overlays 'spoken' with background music, offset by ~2s, volume lowered.
    """
    if custom_music_path:
        music_path = custom_music_path
    else:
        music_path = "bg_music.mp3"

    try:
        bg_music = AudioSegment.from_file(music_path, format="mp3")
    except Exception as e:
        print("[ERROR] Failed to load background music:", e)
        return spoken

    bg_music = bg_music - 18.0
    total_length_ms = len(spoken) + 2000
    looped_music = AudioSegment.empty()
    while len(looped_music) < total_length_ms:
        looped_music += bg_music
    looped_music = looped_music[:total_length_ms]
    final_mix = looped_music.overlay(spoken, position=2000)
    return final_mix


###############################################################################
#                     Q&A UTILITY (POST-PODCAST)
###############################################################################

def call_groq_api_for_qa(system_prompt: str) -> str:
    """
    Single-step Q&A for post-podcast. Usually short usage => minimal tokens.
    """
    try:
        headers = {
            "Authorization": f"Bearer {os.environ.get('GROQ_API_KEY')}",
            "Content-Type": "application/json",
            "Accept": "application/json"
        }
        data = {
            "model": "deepseek-r1-distill-llama-70b",
            "messages": [{"role": "user", "content": system_prompt}],
            "max_tokens": 512,
            "temperature": 0.7
        }
        r = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, data=json.dumps(data))
        r.raise_for_status()
        return r.json()["choices"][0]["message"]["content"].strip()
    except Exception as e:
        print("[ERROR] Groq QA error:", e)
        fallback = {"speaker": "John", "text": "Sorry, I'm having trouble answering now."}
        return json.dumps(fallback)


###############################################################################
#      ITERATIVE MERGING HELPER FUNCTION (BATCH PROCESSING STRATEGY)
###############################################################################

def iterative_merge_summaries(summaries: List[str], groq_client, references_text: str) -> str:
    """
    Iteratively merge a list of summaries into one final report summary.
    This function groups summaries into batches whose total token count is below a set threshold,
    merges each batch, and then recursively merges the batch outputs until only one final summary remains.
    """
    tokenizer = tiktoken.get_encoding("cl100k_base")
    max_merge_input_tokens = 2000  # Set a safe threshold for each merge call

    round_index = 1
    while len(summaries) > 1:
        print(f"[LOG] Iterative merging round {round_index}: {len(summaries)} summaries to merge.")
        new_summaries = []
        i = 0
        while i < len(summaries):
            batch = []
            batch_tokens = 0
            # Group summaries until the token count exceeds threshold
            while i < len(summaries):
                summary = summaries[i]
                summary_tokens = len(tokenizer.encode(summary))
                if batch_tokens + summary_tokens <= max_merge_input_tokens or not batch:
                    batch.append(summary)
                    batch_tokens += summary_tokens
                    i += 1
                else:
                    break
            batch_text = "\n\n".join(batch)
            merge_prompt = f"""
You are a specialized summarization engine. Merge the following summaries into one comprehensive summary.
Summaries:
{batch_text}
References (if any):
{references_text}
Please output the merged summary.
"""
            data = {
                "model": MODEL_COMBINATION,
                "messages": [{"role": "user", "content": merge_prompt}],
                "temperature": 0.3,
                "max_tokens": 4096
            }
            merge_response = call_llm_with_retry(groq_client, **data)
            merged_batch = merge_response.choices[0].message.content.strip()
            merged_batch = re.sub(r"<think>.*?</think>", "", merged_batch, flags=re.DOTALL).strip()
            new_summaries.append(merged_batch)
        summaries = new_summaries
        round_index += 1
    return summaries[0]


###############################################################################
#      LOW-CALL RESEARCH AGENT (Minimizing LLM Calls)
###############################################################################

MODEL_SUMMARIZATION = "llama-3.1-8b-instant"
MODEL_COMBINATION   = "deepseek-r1-distill-llama-70b"

def run_research_agent(
    topic: str,
    report_type: str = "research_report",
    max_results: int = 20
) -> str:
    """
    Low-Call approach:
      1) Tavily search (up to 20 URLs).
      2) Firecrawl scrape => combined text.
      3) Use the full combined text without truncation.
      4) Split into chunks (each 4500 tokens) => Summarize each chunk individually => summaries.
      5) Iteratively merge the summaries into a final report.
      If the report output is incomplete, the model will output "CONTINUE" so that additional calls
      can be made to retrieve the rest of the report.
      => 2 or more total LLM calls (but no more than 10) to reduce the chance of rate limit errors.
    """
    print(f"[LOG] Starting LOW-CALL research agent for topic: {topic}")

    try:
        # Step 1: Tavily search
        print("[LOG] Step 1: Searching with Tavily for relevant URLs (max_results=20).")
        tavily_client = TavilyClient(api_key=os.environ.get("TAVILY_API_KEY"))
        search_data = tavily_client.search(query=topic, max_results=max_results)
        search_results = search_data.get("results", [])
        print(f"[LOG] Tavily provided {len(search_results)} results. Proceeding to Step 2.")
        if not search_results:
            print("[LOG] No relevant search results found by Tavily.")
            return "No relevant search results found."

        references_list = [r["url"] for r in search_results if "url" in r]

        # Step 2: Firecrawl scraping
        print("[LOG] Step 2: Scraping each URL with Firecrawl.")
        combined_content = ""
        for result in search_results:
            url = result["url"]
            print(f"[LOG] Firecrawl scraping: {url}")
            headers = {'Authorization': f'Bearer {os.environ.get("FIRECRAWL_API_KEY")}'}
            payload = {"url": url, "formats": ["markdown"], "onlyMainContent": True}
            try:
                resp = requests.post("https://api.firecrawl.dev/v1/scrape", headers=headers, json=payload)
                resp.raise_for_status()
                data = resp.json()
                if data.get("success") and "markdown" in data.get("data", {}):
                    combined_content += data["data"]["markdown"] + "\n\n"
                else:
                    print(f"[WARNING] Firecrawl scrape failed or no markdown for {url}: {data.get('error')}")
            except requests.RequestException as e:
                print(f"[ERROR] Firecrawl error for {url}: {e}")
                continue

        if not combined_content:
            print("[LOG] Could not retrieve content from any search results. Exiting.")
            return "Could not retrieve content from any of the search results."

        # Step 2.5: Input Sanitization - Remove any chain-of-thought markers.
        combined_content = re.sub(r"<think>.*?</think>", "", combined_content, flags=re.DOTALL)

        # Step 3: Use the full combined text without truncation.
        tokenizer = tiktoken.get_encoding("cl100k_base")
        total_tokens = len(tokenizer.encode(combined_content))
        print(f"[LOG] Step 3: Using the full combined text without truncation. Total tokens: {total_tokens}")

        # Step 4: Splitting text into chunks (4500 tokens each) and summarizing each chunk.
        tokens = tokenizer.encode(combined_content)
        chunk_size = 4500  # Each chunk is 4500 tokens or less.
        total_chunks = math.ceil(len(tokens) / chunk_size)
        print(f"[LOG] Step 4: Splitting text into chunks of up to 4500 tokens. Total chunks: {total_chunks}")
        max_chunks = 10  # Allow up to 10 chunks.
        summaries = []
        start = 0
        chunk_index = 1

        groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

        while start < len(tokens) and chunk_index <= max_chunks:
            end = min(start + chunk_size, len(tokens))
            chunk_text = tokenizer.decode(tokens[start:end])
            print(f"[LOG] Summarizing chunk {chunk_index} with ~{len(tokens[start:end])} tokens.")
            prompt = f"""
You are a specialized summarization engine. Summarize the following text 
for a professional research report. Provide accurate details but do not 
include chain-of-thought or internal reasoning. Keep it concise, but 
include key data points and context:
{chunk_text}
"""
            data = {
                "model": MODEL_SUMMARIZATION,
                "messages": [{"role": "user", "content": prompt}],
                "temperature": 0.2,
                "max_tokens": 768
            }
            response = call_llm_with_retry(groq_client, **data)
            summary_text = response.choices[0].message.content.strip()
            summaries.append(summary_text)
            start = end
            chunk_index += 1

        # Step 5: Iteratively merge the chunk summaries.
        print("[LOG] Step 5: Iteratively merging chunk summaries.")
        references_text = "\n".join(f"- {url}" for url in references_list) if references_list else "None"
        final_text = iterative_merge_summaries(summaries, groq_client, references_text)

        # --- NEW POST-PROCESSING STEP ---
        # Remove any lingering chain-of-thought markers.
        final_text = re.sub(r"<think>.*?</think>", "", final_text, flags=re.DOTALL).strip()
        # ------------------------------

        # Step 6: PDF generation
        print("[LOG] Step 6: Generating final PDF from the merged text.")
        final_report = generate_report(final_text)

        print("[LOG] Done! Returning PDF from run_research_agent (low-call).")
        return final_report

    except Exception as e:
        print(f"[ERROR] Error in run_research_agent: {e}")
        return f"Sorry, encountered an error: {str(e)}"