Spaces:
Sleeping
Sleeping
Update utils.py
Browse files
utils.py
CHANGED
@@ -52,6 +52,7 @@ def call_llm_with_retry(groq_client, **payload):
|
|
52 |
try:
|
53 |
print(f"[DEBUG] call_llm_with_retry attempt {attempt+1}")
|
54 |
response = groq_client.chat.completions.create(**payload)
|
|
|
55 |
time.sleep(0.3)
|
56 |
print("[DEBUG] LLM call succeeded, returning response.")
|
57 |
return response
|
@@ -114,61 +115,178 @@ def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
|
|
114 |
|
115 |
|
116 |
###############################################################################
|
117 |
-
#
|
118 |
###############################################################################
|
119 |
|
120 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
"""
|
122 |
-
|
123 |
-
|
124 |
"""
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
""
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
"
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
|
170 |
###############################################################################
|
171 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
###############################################################################
|
173 |
|
174 |
def _preprocess_text_for_tts(text: str, speaker: str) -> str:
|
@@ -181,11 +299,13 @@ def _preprocess_text_for_tts(text: str, speaker: str) -> str:
|
|
181 |
if abbr in abbreviations_as_words:
|
182 |
return abbr
|
183 |
return ".".join(list(abbr)) + "."
|
|
|
184 |
text = re.sub(r"\b([A-Z]{2,})\b", insert_periods_for_abbrev, text)
|
185 |
text = re.sub(r"\.\.", ".", text)
|
186 |
|
187 |
def remove_periods_for_tts(m):
|
188 |
return m.group().replace(".", " ").strip()
|
|
|
189 |
text = re.sub(r"[A-Z]\.[A-Z](?:\.[A-Z])*\.", remove_periods_for_tts, text)
|
190 |
text = re.sub(r"-", " ", text)
|
191 |
text = re.sub(r"\b(ha(ha)?|heh|lol)\b", "(* laughs *)", text, flags=re.IGNORECASE)
|
@@ -204,9 +324,12 @@ def _preprocess_text_for_tts(text: str, speaker: str) -> str:
|
|
204 |
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
|
205 |
conj_pattern = r"\b(and|but|so|because|however)\b"
|
206 |
text = re.sub(conj_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)
|
|
|
207 |
text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)
|
|
|
208 |
def capitalize_after_sentence(m):
|
209 |
return m.group().upper()
|
|
|
210 |
text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_after_sentence, text)
|
211 |
return text.strip()
|
212 |
|
@@ -230,6 +353,7 @@ def generate_audio_mp3(text: str, speaker: str) -> str:
|
|
230 |
body = {"text": processed_text}
|
231 |
r = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
232 |
r.raise_for_status()
|
|
|
233 |
content_type = r.headers.get("Content-Type", "")
|
234 |
if "audio/mpeg" not in content_type:
|
235 |
raise ValueError("Unexpected content-type from Deepgram TTS.")
|
@@ -238,6 +362,7 @@ def generate_audio_mp3(text: str, speaker: str) -> str:
|
|
238 |
if chunk:
|
239 |
mp3_file.write(chunk)
|
240 |
mp3_path = mp3_file.name
|
|
|
241 |
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
|
242 |
audio_seg = effects.normalize(audio_seg)
|
243 |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
@@ -245,6 +370,7 @@ def generate_audio_mp3(text: str, speaker: str) -> str:
|
|
245 |
if os.path.exists(mp3_path):
|
246 |
os.remove(mp3_path)
|
247 |
return final_mp3_path
|
|
|
248 |
else:
|
249 |
print("[LOG] Using Murf API for TTS. Language=", language_selection)
|
250 |
from indic_transliteration.sanscript import transliterate, DEVANAGARI, IAST
|
@@ -263,6 +389,7 @@ def generate_audio_mp3(text: str, speaker: str) -> str:
|
|
263 |
voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
|
264 |
else:
|
265 |
voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
|
|
|
266 |
payload = {
|
267 |
"audioDuration": 0,
|
268 |
"channelType": "MONO",
|
@@ -287,9 +414,11 @@ def generate_audio_mp3(text: str, speaker: str) -> str:
|
|
287 |
raise ValueError("No audioFile URL from Murf API.")
|
288 |
audio_resp = requests.get(audio_url)
|
289 |
audio_resp.raise_for_status()
|
|
|
290 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as wav_file:
|
291 |
wav_file.write(audio_resp.content)
|
292 |
wav_path = wav_file.name
|
|
|
293 |
audio_seg = AudioSegment.from_file(wav_path, format="wav")
|
294 |
audio_seg = effects.normalize(audio_seg)
|
295 |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
@@ -308,11 +437,13 @@ def mix_with_bg_music(spoken: AudioSegment, custom_music_path=None) -> AudioSegm
|
|
308 |
music_path = custom_music_path
|
309 |
else:
|
310 |
music_path = "bg_music.mp3"
|
|
|
311 |
try:
|
312 |
bg_music = AudioSegment.from_file(music_path, format="mp3")
|
313 |
except Exception as e:
|
314 |
print("[ERROR] Failed to load background music:", e)
|
315 |
return spoken
|
|
|
316 |
bg_music = bg_music - 18.0
|
317 |
total_length_ms = len(spoken) + 2000
|
318 |
looped_music = AudioSegment.empty()
|
@@ -352,6 +483,61 @@ def call_groq_api_for_qa(system_prompt: str) -> str:
|
|
352 |
return json.dumps(fallback)
|
353 |
|
354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
###############################################################################
|
356 |
# LOW-CALL RESEARCH AGENT (Minimizing LLM Calls)
|
357 |
###############################################################################
|
@@ -370,11 +556,10 @@ def run_research_agent(
|
|
370 |
2) Firecrawl scrape => combined text.
|
371 |
3) Use the full combined text without truncation.
|
372 |
4) Split into chunks (each 4500 tokens) => Summarize each chunk individually => summaries.
|
373 |
-
5) Iteratively merge the summaries into a
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
(Total LLM calls: 2 or more, but no more than 10.)
|
378 |
"""
|
379 |
print(f"[LOG] Starting LOW-CALL research agent for topic: {topic}")
|
380 |
|
@@ -388,6 +573,7 @@ def run_research_agent(
|
|
388 |
if not search_results:
|
389 |
print("[LOG] No relevant search results found by Tavily.")
|
390 |
return "No relevant search results found."
|
|
|
391 |
references_list = [r["url"] for r in search_results if "url" in r]
|
392 |
|
393 |
# Step 2: Firecrawl scraping
|
@@ -460,87 +646,15 @@ include key data points and context:
|
|
460 |
# Step 5: Iteratively merge the chunk summaries.
|
461 |
print("[LOG] Step 5: Iteratively merging chunk summaries.")
|
462 |
references_text = "\n".join(f"- {url}" for url in references_list) if references_list else "None"
|
463 |
-
|
464 |
-
print("[LOG] Iterative merge produced a consolidated summary.")
|
465 |
-
consolidated_summary = re.sub(r"<think>.*?</think>", "", consolidated_summary, flags=re.DOTALL).strip()
|
466 |
-
|
467 |
-
# Step 6: Final merge to generate the full research report.
|
468 |
-
final_prompt = f"""
|
469 |
-
IMPORTANT: Do NOT include any chain-of-thought, internal planning, or hidden reasoning in the final output.
|
470 |
-
Draft a professional, world-class research report that adheres to the following tenets:
|
471 |
-
|
472 |
-
I. Essential Principles and Qualities:
|
473 |
-
- Accuracy: Present accurate facts with no spelling or grammatical errors.
|
474 |
-
- Clarity: Use clear, straightforward language.
|
475 |
-
- Brevity: Be concise yet complete.
|
476 |
-
- Objectivity: Avoid personal bias.
|
477 |
-
- Simplicity: Use simple language, and explain any necessary technical jargon briefly.
|
478 |
-
- Logical Sequence: Arrange points in a logical order with proper planning.
|
479 |
-
- Proper Form and Presentation: Follow required formats with an attractive presentation.
|
480 |
-
- Selectiveness: Include only necessary content.
|
481 |
-
- Comprehensiveness: Provide complete and detailed coverage.
|
482 |
-
- Reliability, Coherence, and Relevance: Ensure a logical flow and relevance to the research questions.
|
483 |
-
|
484 |
-
II. Structure the Report as Follows:
|
485 |
-
- Title Page (with a concise descriptive title)
|
486 |
-
- Table of Contents
|
487 |
-
- Executive Summary
|
488 |
-
- Introduction (clearly outlining the research purpose and objectives)
|
489 |
-
- Historical or Contextual Background
|
490 |
-
- Detailed Findings organized into coherent thematic sections
|
491 |
-
- Conclusion (with recommendations and insights)
|
492 |
-
- References/Bibliography (listing the provided URLs)
|
493 |
-
|
494 |
-
III. Content and Writing Style:
|
495 |
-
- Use consistent and clear language.
|
496 |
-
- Support arguments with reliable evidence.
|
497 |
-
- Write in active voice with clear headings and a logical flow.
|
498 |
-
- Develop each section in multiple detailed paragraphs.
|
499 |
-
|
500 |
-
IV. Steps for Writing the Report:
|
501 |
-
- Write a clear thesis statement.
|
502 |
-
- Prepare an outline and develop content sequentially.
|
503 |
-
|
504 |
-
Consolidated Summary:
|
505 |
-
{consolidated_summary}
|
506 |
-
|
507 |
-
References (URLs):
|
508 |
-
{references_text}
|
509 |
-
|
510 |
-
Now, merge the above into one thoroughly expanded, detailed, and exhaustive research report.
|
511 |
-
If the report is incomplete, please output "CONTINUE" at the end; otherwise, end with "END_OF_REPORT".
|
512 |
-
"""
|
513 |
-
final_data = {
|
514 |
-
"model": MODEL_COMBINATION,
|
515 |
-
"messages": [{"role": "user", "content": final_prompt}],
|
516 |
-
"temperature": 0.3,
|
517 |
-
"max_tokens": 4096
|
518 |
-
}
|
519 |
-
final_response = call_llm_with_retry(groq_client, **final_data)
|
520 |
-
final_text = final_response.choices[0].message.content.strip()
|
521 |
-
|
522 |
-
# Continuation loop: if the report does not include END_OF_REPORT, ask for continuation.
|
523 |
-
while "END_OF_REPORT" not in final_text:
|
524 |
-
print("[LOG] Final output incomplete. Requesting continuation...")
|
525 |
-
continuation_prompt = "The previous report ended with 'CONTINUE'. Please continue the report from where it left off, and when finished, output 'END_OF_REPORT'."
|
526 |
-
cont_data = {
|
527 |
-
"model": MODEL_COMBINATION,
|
528 |
-
"messages": [{"role": "user", "content": continuation_prompt}],
|
529 |
-
"temperature": 0.3,
|
530 |
-
"max_tokens": 4096
|
531 |
-
}
|
532 |
-
cont_response = call_llm_with_retry(groq_client, **cont_data)
|
533 |
-
cont_text = cont_response.choices[0].message.content.strip()
|
534 |
-
final_text += "\n" + cont_text
|
535 |
|
536 |
# --- NEW POST-PROCESSING STEP ---
|
537 |
-
# Remove any lingering chain-of-thought markers
|
538 |
-
final_text = re.sub(r"<think>.*?</think>", "", final_text, flags=re.DOTALL)
|
539 |
-
final_text = final_text.replace("END_OF_REPORT", "").replace("CONTINUE", "").strip()
|
540 |
# ------------------------------
|
541 |
|
542 |
-
# Step
|
543 |
-
print("[LOG] Step
|
544 |
final_report = generate_report(final_text)
|
545 |
|
546 |
print("[LOG] Done! Returning PDF from run_research_agent (low-call).")
|
@@ -548,4 +662,4 @@ If the report is incomplete, please output "CONTINUE" at the end; otherwise, end
|
|
548 |
|
549 |
except Exception as e:
|
550 |
print(f"[ERROR] Error in run_research_agent: {e}")
|
551 |
-
return f"Sorry, encountered an error: {str(e)}"
|
|
|
52 |
try:
|
53 |
print(f"[DEBUG] call_llm_with_retry attempt {attempt+1}")
|
54 |
response = groq_client.chat.completions.create(**payload)
|
55 |
+
# Short sleep to avoid bursting usage
|
56 |
time.sleep(0.3)
|
57 |
print("[DEBUG] LLM call succeeded, returning response.")
|
58 |
return response
|
|
|
115 |
|
116 |
|
117 |
###############################################################################
|
118 |
+
# PODCAST SCRIPT GENERATION (Single Call)
|
119 |
###############################################################################
|
120 |
|
121 |
+
def generate_script(
|
122 |
+
system_prompt: str,
|
123 |
+
input_text: str,
|
124 |
+
tone: str,
|
125 |
+
target_length: str,
|
126 |
+
host_name: str = "Jane",
|
127 |
+
guest_name: str = "John",
|
128 |
+
sponsor_style: str = "Separate Break",
|
129 |
+
sponsor_provided=None
|
130 |
+
):
|
131 |
"""
|
132 |
+
If you do a single call to generate the entire script.
|
133 |
+
Uses DEEPSEEK_R1. Just ensure you parse the JSON.
|
134 |
"""
|
135 |
+
print("[LOG] Generating script with tone:", tone, "and length:", target_length)
|
136 |
+
|
137 |
+
language_selection = st.session_state.get("language_selection", "English (American)")
|
138 |
+
if (host_name == "Jane" or not host_name) and language_selection in ["English (Indian)", "Hinglish", "Hindi"]:
|
139 |
+
host_name = "Isha"
|
140 |
+
if (guest_name == "John" or not guest_name) and language_selection in ["English (Indian)", "Hinglish", "Hindi"]:
|
141 |
+
guest_name = "Aarav"
|
142 |
+
|
143 |
+
words_per_minute = 150
|
144 |
+
numeric_minutes = 3
|
145 |
+
match = re.search(r"(\d+)", target_length)
|
146 |
+
if match:
|
147 |
+
numeric_minutes = int(match.group(1))
|
148 |
+
|
149 |
+
min_words = max(50, numeric_minutes * 100)
|
150 |
+
max_words = numeric_minutes * words_per_minute
|
151 |
+
|
152 |
+
tone_map = {
|
153 |
+
"Humorous": "funny and exciting, makes people chuckle",
|
154 |
+
"Formal": "business-like, well-structured, professional",
|
155 |
+
"Casual": "like a conversation between close friends, relaxed and informal",
|
156 |
+
"Youthful": "like how teenagers might chat, energetic and lively"
|
157 |
+
}
|
158 |
+
chosen_tone = tone_map.get(tone, "casual")
|
159 |
+
|
160 |
+
if sponsor_provided:
|
161 |
+
if sponsor_style == "Separate Break":
|
162 |
+
sponsor_instructions = (
|
163 |
+
"If sponsor content is provided, include it in a separate ad break (~30 seconds). "
|
164 |
+
"Use 'Now a word from our sponsor...' and end with 'Back to the show', etc."
|
165 |
+
)
|
166 |
+
else:
|
167 |
+
sponsor_instructions = (
|
168 |
+
"If sponsor content is provided, blend it naturally (~30 seconds) into conversation. "
|
169 |
+
"Avoid abrupt transitions."
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
sponsor_instructions = ""
|
173 |
+
|
174 |
+
prompt = (
|
175 |
+
f"{system_prompt}\n"
|
176 |
+
f"TONE: {chosen_tone}\n"
|
177 |
+
f"TARGET LENGTH: {target_length} (~{min_words}-{max_words} words)\n"
|
178 |
+
f"INPUT TEXT: {input_text}\n\n"
|
179 |
+
f"# Sponsor Style Instruction:\n{sponsor_instructions}\n\n"
|
180 |
+
"Please provide the output in the following JSON format without any extra text:\n"
|
181 |
+
"{\n"
|
182 |
+
' "dialogue": [\n'
|
183 |
+
' { "speaker": "Jane", "text": "..." },\n'
|
184 |
+
' { "speaker": "John", "text": "..." }\n'
|
185 |
+
" ]\n"
|
186 |
+
"}"
|
187 |
+
)
|
188 |
+
if language_selection == "Hinglish":
|
189 |
+
prompt += "\n\nPlease generate the script in Romanized Hindi.\n"
|
190 |
+
elif language_selection == "Hindi":
|
191 |
+
prompt += "\n\nPlease generate the script exclusively in Hindi.\n"
|
192 |
+
|
193 |
+
print("[LOG] Sending script generation prompt to LLM.")
|
194 |
+
try:
|
195 |
+
headers = {
|
196 |
+
"Authorization": f"Bearer {os.environ.get('DEEPSEEK_API_KEY')}",
|
197 |
+
"Content-Type": "application/json"
|
198 |
+
}
|
199 |
+
data = {
|
200 |
+
"model": "deepseek/deepseek-r1",
|
201 |
+
"messages": [{"role": "user", "content": prompt}],
|
202 |
+
"max_tokens": 2048,
|
203 |
+
"temperature": 0.7
|
204 |
+
}
|
205 |
+
resp = requests.post("https://openrouter.ai/api/v1/chat/completions",
|
206 |
+
headers=headers, data=json.dumps(data))
|
207 |
+
resp.raise_for_status()
|
208 |
+
raw_content = resp.json()["choices"][0]["message"]["content"].strip()
|
209 |
+
except Exception as e:
|
210 |
+
print("[ERROR] LLM error generating script:", e)
|
211 |
+
raise ValueError(f"Error generating script: {str(e)}")
|
212 |
+
|
213 |
+
start_idx = raw_content.find("{")
|
214 |
+
end_idx = raw_content.rfind("}")
|
215 |
+
if start_idx == -1 or end_idx == -1:
|
216 |
+
raise ValueError("No JSON found in LLM response for script generation.")
|
217 |
+
|
218 |
+
json_str = raw_content[start_idx:end_idx+1]
|
219 |
+
try:
|
220 |
+
data_js = json.loads(json_str)
|
221 |
+
dialogue_list = data_js.get("dialogue", [])
|
222 |
+
|
223 |
+
# Adjust speaker names if they match
|
224 |
+
for d in dialogue_list:
|
225 |
+
raw_speaker = d.get("speaker", "Jane")
|
226 |
+
if raw_speaker.lower() == host_name.lower():
|
227 |
+
d["speaker"] = "Jane"
|
228 |
+
d["display_speaker"] = host_name
|
229 |
+
elif raw_speaker.lower() == guest_name.lower():
|
230 |
+
d["speaker"] = "John"
|
231 |
+
d["display_speaker"] = guest_name
|
232 |
+
else:
|
233 |
+
d["speaker"] = "Jane"
|
234 |
+
d["display_speaker"] = raw_speaker
|
235 |
+
|
236 |
+
new_dialogue_items = []
|
237 |
+
for d in dialogue_list:
|
238 |
+
if "display_speaker" not in d:
|
239 |
+
d["display_speaker"] = d["speaker"]
|
240 |
+
new_dialogue_items.append(DialogueItem(**d))
|
241 |
+
|
242 |
+
return Dialogue(dialogue=new_dialogue_items)
|
243 |
+
|
244 |
+
except json.JSONDecodeError as e:
|
245 |
+
print("[ERROR] JSON decoding failed for script generation:", e)
|
246 |
+
raise ValueError(f"Script parse error: {str(e)}")
|
247 |
+
except Exception as e:
|
248 |
+
print("[ERROR] Unknown error parsing script JSON:", e)
|
249 |
+
raise ValueError(f"Script parse error: {str(e)}")
|
250 |
|
251 |
|
252 |
###############################################################################
|
253 |
+
# YOUTUBE TRANSCRIPTION (RAPIDAPI)
|
254 |
+
###############################################################################
|
255 |
+
|
256 |
+
def transcribe_youtube_video(video_url: str) -> str:
|
257 |
+
print("[LOG] Transcribing YouTube video:", video_url)
|
258 |
+
match = re.search(r"(?:v=|/)([0-9A-Za-z_-]{11})", video_url)
|
259 |
+
if not match:
|
260 |
+
raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")
|
261 |
+
video_id = match.group(1)
|
262 |
+
print("[LOG] Extracted video ID:", video_id)
|
263 |
+
|
264 |
+
base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
|
265 |
+
params = {"video_id": video_id, "lang": "en"}
|
266 |
+
headers = {
|
267 |
+
"x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
|
268 |
+
"x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
|
269 |
+
}
|
270 |
+
try:
|
271 |
+
resp = requests.get(base_url, headers=headers, params=params, timeout=30)
|
272 |
+
resp.raise_for_status()
|
273 |
+
data = resp.json()
|
274 |
+
if not isinstance(data, list) or not data:
|
275 |
+
raise ValueError(f"Unexpected transcript format or empty transcript: {data}")
|
276 |
+
|
277 |
+
transcript_as_text = data[0].get("transcriptionAsText", "").strip()
|
278 |
+
if not transcript_as_text:
|
279 |
+
raise ValueError("transcriptionAsText missing or empty in RapidAPI response.")
|
280 |
+
|
281 |
+
print("[LOG] Transcript retrieval successful. Sample:", transcript_as_text[:200], "...")
|
282 |
+
return transcript_as_text
|
283 |
+
except Exception as e:
|
284 |
+
print("[ERROR] YouTube transcription error:", e)
|
285 |
+
raise ValueError(f"Error transcribing YouTube video: {str(e)}")
|
286 |
+
|
287 |
+
|
288 |
+
###############################################################################
|
289 |
+
# AUDIO GENERATION (TTS) AND BG MUSIC MIX
|
290 |
###############################################################################
|
291 |
|
292 |
def _preprocess_text_for_tts(text: str, speaker: str) -> str:
|
|
|
299 |
if abbr in abbreviations_as_words:
|
300 |
return abbr
|
301 |
return ".".join(list(abbr)) + "."
|
302 |
+
|
303 |
text = re.sub(r"\b([A-Z]{2,})\b", insert_periods_for_abbrev, text)
|
304 |
text = re.sub(r"\.\.", ".", text)
|
305 |
|
306 |
def remove_periods_for_tts(m):
|
307 |
return m.group().replace(".", " ").strip()
|
308 |
+
|
309 |
text = re.sub(r"[A-Z]\.[A-Z](?:\.[A-Z])*\.", remove_periods_for_tts, text)
|
310 |
text = re.sub(r"-", " ", text)
|
311 |
text = re.sub(r"\b(ha(ha)?|heh|lol)\b", "(* laughs *)", text, flags=re.IGNORECASE)
|
|
|
324 |
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
|
325 |
conj_pattern = r"\b(and|but|so|because|however)\b"
|
326 |
text = re.sub(conj_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)
|
327 |
+
|
328 |
text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)
|
329 |
+
|
330 |
def capitalize_after_sentence(m):
|
331 |
return m.group().upper()
|
332 |
+
|
333 |
text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_after_sentence, text)
|
334 |
return text.strip()
|
335 |
|
|
|
353 |
body = {"text": processed_text}
|
354 |
r = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
355 |
r.raise_for_status()
|
356 |
+
|
357 |
content_type = r.headers.get("Content-Type", "")
|
358 |
if "audio/mpeg" not in content_type:
|
359 |
raise ValueError("Unexpected content-type from Deepgram TTS.")
|
|
|
362 |
if chunk:
|
363 |
mp3_file.write(chunk)
|
364 |
mp3_path = mp3_file.name
|
365 |
+
|
366 |
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
|
367 |
audio_seg = effects.normalize(audio_seg)
|
368 |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
|
|
370 |
if os.path.exists(mp3_path):
|
371 |
os.remove(mp3_path)
|
372 |
return final_mp3_path
|
373 |
+
|
374 |
else:
|
375 |
print("[LOG] Using Murf API for TTS. Language=", language_selection)
|
376 |
from indic_transliteration.sanscript import transliterate, DEVANAGARI, IAST
|
|
|
389 |
voice_id = "hi-IN-kabir" if speaker == "John" else "hi-IN-shweta"
|
390 |
else:
|
391 |
voice_id = "en-IN-aarav" if speaker == "John" else "en-IN-isha"
|
392 |
+
|
393 |
payload = {
|
394 |
"audioDuration": 0,
|
395 |
"channelType": "MONO",
|
|
|
414 |
raise ValueError("No audioFile URL from Murf API.")
|
415 |
audio_resp = requests.get(audio_url)
|
416 |
audio_resp.raise_for_status()
|
417 |
+
|
418 |
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as wav_file:
|
419 |
wav_file.write(audio_resp.content)
|
420 |
wav_path = wav_file.name
|
421 |
+
|
422 |
audio_seg = AudioSegment.from_file(wav_path, format="wav")
|
423 |
audio_seg = effects.normalize(audio_seg)
|
424 |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
|
|
437 |
music_path = custom_music_path
|
438 |
else:
|
439 |
music_path = "bg_music.mp3"
|
440 |
+
|
441 |
try:
|
442 |
bg_music = AudioSegment.from_file(music_path, format="mp3")
|
443 |
except Exception as e:
|
444 |
print("[ERROR] Failed to load background music:", e)
|
445 |
return spoken
|
446 |
+
|
447 |
bg_music = bg_music - 18.0
|
448 |
total_length_ms = len(spoken) + 2000
|
449 |
looped_music = AudioSegment.empty()
|
|
|
483 |
return json.dumps(fallback)
|
484 |
|
485 |
|
486 |
+
###############################################################################
|
487 |
+
# ITERATIVE MERGING HELPER FUNCTION (BATCH PROCESSING STRATEGY)
|
488 |
+
###############################################################################
|
489 |
+
|
490 |
+
def iterative_merge_summaries(summaries: List[str], groq_client, references_text: str) -> str:
|
491 |
+
"""
|
492 |
+
Iteratively merge a list of summaries into one final report summary.
|
493 |
+
This function groups summaries into batches whose total token count is below a set threshold,
|
494 |
+
merges each batch, and then recursively merges the batch outputs until only one final summary remains.
|
495 |
+
"""
|
496 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
497 |
+
max_merge_input_tokens = 2000 # Set a safe threshold for each merge call
|
498 |
+
|
499 |
+
round_index = 1
|
500 |
+
while len(summaries) > 1:
|
501 |
+
print(f"[LOG] Iterative merging round {round_index}: {len(summaries)} summaries to merge.")
|
502 |
+
new_summaries = []
|
503 |
+
i = 0
|
504 |
+
while i < len(summaries):
|
505 |
+
batch = []
|
506 |
+
batch_tokens = 0
|
507 |
+
# Group summaries until the token count exceeds threshold
|
508 |
+
while i < len(summaries):
|
509 |
+
summary = summaries[i]
|
510 |
+
summary_tokens = len(tokenizer.encode(summary))
|
511 |
+
if batch_tokens + summary_tokens <= max_merge_input_tokens or not batch:
|
512 |
+
batch.append(summary)
|
513 |
+
batch_tokens += summary_tokens
|
514 |
+
i += 1
|
515 |
+
else:
|
516 |
+
break
|
517 |
+
batch_text = "\n\n".join(batch)
|
518 |
+
merge_prompt = f"""
|
519 |
+
You are a specialized summarization engine. Merge the following summaries into one comprehensive summary.
|
520 |
+
Summaries:
|
521 |
+
{batch_text}
|
522 |
+
References (if any):
|
523 |
+
{references_text}
|
524 |
+
Please output the merged summary.
|
525 |
+
"""
|
526 |
+
data = {
|
527 |
+
"model": MODEL_COMBINATION,
|
528 |
+
"messages": [{"role": "user", "content": merge_prompt}],
|
529 |
+
"temperature": 0.3,
|
530 |
+
"max_tokens": 4096
|
531 |
+
}
|
532 |
+
merge_response = call_llm_with_retry(groq_client, **data)
|
533 |
+
merged_batch = merge_response.choices[0].message.content.strip()
|
534 |
+
merged_batch = re.sub(r"<think>.*?</think>", "", merged_batch, flags=re.DOTALL).strip()
|
535 |
+
new_summaries.append(merged_batch)
|
536 |
+
summaries = new_summaries
|
537 |
+
round_index += 1
|
538 |
+
return summaries[0]
|
539 |
+
|
540 |
+
|
541 |
###############################################################################
|
542 |
# LOW-CALL RESEARCH AGENT (Minimizing LLM Calls)
|
543 |
###############################################################################
|
|
|
556 |
2) Firecrawl scrape => combined text.
|
557 |
3) Use the full combined text without truncation.
|
558 |
4) Split into chunks (each 4500 tokens) => Summarize each chunk individually => summaries.
|
559 |
+
5) Iteratively merge the summaries into a final report.
|
560 |
+
If the report output is incomplete, the model will output "CONTINUE" so that additional calls
|
561 |
+
can be made to retrieve the rest of the report.
|
562 |
+
=> 2 or more total LLM calls (but no more than 10) to reduce the chance of rate limit errors.
|
|
|
563 |
"""
|
564 |
print(f"[LOG] Starting LOW-CALL research agent for topic: {topic}")
|
565 |
|
|
|
573 |
if not search_results:
|
574 |
print("[LOG] No relevant search results found by Tavily.")
|
575 |
return "No relevant search results found."
|
576 |
+
|
577 |
references_list = [r["url"] for r in search_results if "url" in r]
|
578 |
|
579 |
# Step 2: Firecrawl scraping
|
|
|
646 |
# Step 5: Iteratively merge the chunk summaries.
|
647 |
print("[LOG] Step 5: Iteratively merging chunk summaries.")
|
648 |
references_text = "\n".join(f"- {url}" for url in references_list) if references_list else "None"
|
649 |
+
final_text = iterative_merge_summaries(summaries, groq_client, references_text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
650 |
|
651 |
# --- NEW POST-PROCESSING STEP ---
|
652 |
+
# Remove any lingering chain-of-thought markers.
|
653 |
+
final_text = re.sub(r"<think>.*?</think>", "", final_text, flags=re.DOTALL).strip()
|
|
|
654 |
# ------------------------------
|
655 |
|
656 |
+
# Step 6: PDF generation
|
657 |
+
print("[LOG] Step 6: Generating final PDF from the merged text.")
|
658 |
final_report = generate_report(final_text)
|
659 |
|
660 |
print("[LOG] Done! Returning PDF from run_research_agent (low-call).")
|
|
|
662 |
|
663 |
except Exception as e:
|
664 |
print(f"[ERROR] Error in run_research_agent: {e}")
|
665 |
+
return f"Sorry, encountered an error: {str(e)}"
|