File size: 18,690 Bytes
c0e2ca4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
# utils.py

import os
import re
import json
import requests
import tempfile
from bs4 import BeautifulSoup
from typing import List, Literal
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import yt_dlp
import tiktoken
from groq import Groq  # Ensure Groq client is imported
import numpy as np
import torch  # Added to check CUDA availability

class DialogueItem(BaseModel):
    speaker: Literal["Jane", "John"]
    text: str

class Dialogue(BaseModel):
    dialogue: List[DialogueItem]

# Initialize Whisper ASR pipeline
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=0 if torch.cuda.is_available() else -1)

def truncate_text(text, max_tokens=2048):
    print("[LOG] Truncating text if needed.")
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(text)
    if len(tokens) > max_tokens:
        print("[LOG] Text too long, truncating.")
        return tokenizer.decode(tokens[:max_tokens])
    return text

def extract_text_from_url(url):
    print("[LOG] Extracting text from URL:", url)
    try:
        response = requests.get(url)
        if response.status_code != 200:
            print(f"[ERROR] Failed to fetch URL: {url} with status code {response.status_code}")
            return ""
        soup = BeautifulSoup(response.text, 'html.parser')
        for script in soup(["script", "style"]):
            script.decompose()
        text = soup.get_text(separator=' ')
        print("[LOG] Text extraction from URL successful.")
        return text
    except Exception as e:
        print(f"[ERROR] Exception during text extraction from URL: {e}")
        return ""

def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
    """
    Shifts the pitch of an AudioSegment by a given number of semitones.
    Positive semitones shift the pitch up, negative shift it down.
    """
    print(f"[LOG] Shifting pitch by {semitones} semitones.")
    new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
    shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
    return shifted_audio.set_frame_rate(audio.frame_rate)

def is_sufficient(text: str, min_word_count: int = 500) -> bool:
    """
    Determines if the fetched information meets the sufficiency criteria.
    
    :param text: Aggregated text from primary sources.
    :param min_word_count: Minimum number of words required.
    :return: True if sufficient, False otherwise.
    """
    word_count = len(text.split())
    print(f"[DEBUG] Aggregated word count: {word_count}")
    return word_count >= min_word_count

def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
    """
    Queries the Groq API to retrieve additional relevant information from the LLM's knowledge base.
    
    :param topic: The research topic.
    :param existing_text: The text already gathered from primary sources.
    :return: Additional relevant information as a string.
    """
    print("[LOG] Querying LLM for additional information.")
    # Define the system prompt for the LLM
    system_prompt = (
        "You are an AI assistant with extensive knowledge up to 2023-10. "
        "Provide additional relevant information on the following topic based on your knowledge base.\n\n"
        f"Topic: {topic}\n\n"
        f"Existing Information: {existing_text}\n\n"
        "Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
    )
    
    groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
    
    try:
        response = groq_client.chat.completions.create(
            messages=[{"role": "system", "content": system_prompt}],
            model="llama-3.3-70b-versatile",
            max_tokens=1024,
            temperature=0.7
        )
    except Exception as e:
        print("[ERROR] Groq API error during fallback:", e)
        return ""
    
    additional_info = response.choices[0].message.content.strip()
    print("[DEBUG] Additional information from LLM:")
    print(additional_info)
    return additional_info

def research_topic(topic: str) -> str:
    # Sources:
    sources = {
        "BBC": "https://feeds.bbci.co.uk/news/rss.xml",
        "CNN": "http://rss.cnn.com/rss/edition.rss",
        "Associated Press": "https://apnews.com/apf-topnews",
        "NDTV": "https://www.ndtv.com/rss/top-stories",
        "Times of India": "https://timesofindia.indiatimes.com/rssfeeds/296589292.cms",
        "The Hindu": "https://www.thehindu.com/news/national/kerala/rssfeed.xml",
        "Economic Times": "https://economictimes.indiatimes.com/rssfeeds/1977021501.cms",
        "Google News - Custom": f"https://news.google.com/rss/search?q={requests.utils.quote(topic)}&hl=en-IN&gl=IN&ceid=IN:en",
    }

    summary_parts = []

    # Wikipedia summary
    wiki_summary = fetch_wikipedia_summary(topic)
    if wiki_summary:
        summary_parts.append(f"From Wikipedia: {wiki_summary}")

    # For each news RSS
    for name, url in sources.items():
        try:
            items = fetch_rss_feed(url)
            if not items:
                continue
            # Use simple keyword matching
            title, desc, link = find_relevant_article(items, topic, min_match=2)
            if link:
                article_text = fetch_article_text(link)
                if article_text:
                    summary_parts.append(f"From {name}: {article_text}")
                else:
                    # If no main text extracted, use title/desc
                    summary_parts.append(f"From {name}: {title} - {desc}")
        except Exception as e:
            print(f"[ERROR] Error fetching from {name} RSS feed:", e)
            continue

    aggregated_info = " ".join(summary_parts)
    print("[DEBUG] Aggregated information from primary sources.")
    print(aggregated_info)

    if not is_sufficient(aggregated_info):
        print("[LOG] Insufficient information from primary sources. Initiating fallback to LLM.")
        additional_info = query_llm_for_additional_info(topic, aggregated_info)
        if additional_info:
            aggregated_info += " " + additional_info
        else:
            print("[ERROR] Failed to retrieve additional information from LLM.")

    if not aggregated_info:
        # No info found at all
        print("[LOG] No information found for the topic.")
        return f"Sorry, I couldn't find recent information on '{topic}'."

    return aggregated_info

def fetch_wikipedia_summary(topic: str) -> str:
    print("[LOG] Fetching Wikipedia summary for:", topic)
    try:
        # 1. Search for the topic
        search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
        resp = requests.get(search_url)
        if resp.status_code != 200:
            print(f"[ERROR] Failed to fetch Wikipedia search results for topic: {topic}")
            return ""
        data = resp.json()
        if len(data) > 1 and data[1]:
            title = data[1][0]
            # 2. Fetch summary
            summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
            s_resp = requests.get(summary_url)
            if s_resp.status_code == 200:
                s_data = s_resp.json()
                if "extract" in s_data:
                    print("[LOG] Wikipedia summary fetched successfully.")
                    return s_data["extract"]
        print("[LOG] No Wikipedia summary found for topic:", topic)
        return ""
    except Exception as e:
        print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
        return ""

def fetch_rss_feed(feed_url: str) -> list:
    print("[LOG] Fetching RSS feed:", feed_url)
    try:
        resp = requests.get(feed_url)
        if resp.status_code != 200:
            print(f"[ERROR] Failed to fetch RSS feed: {feed_url} with status code {resp.status_code}")
            return []
        # Use html.parser instead of xml to avoid needing lxml or other parsers.
        soup = BeautifulSoup(resp.content, "html.parser")
        items = soup.find_all("item")
        print(f"[LOG] Number of items fetched from {feed_url}: {len(items)}")
        return items
    except Exception as e:
        print(f"[ERROR] Exception occurred while fetching RSS feed {feed_url}: {e}")
        return []

def find_relevant_article(items, topic: str, min_match=2) -> tuple:
    """
    Searches for relevant articles based on topic keywords.
    :param items: List of RSS feed items
    :param topic: Topic string
    :param min_match: Minimum number of keyword matches required
    :return: (title, description, link) or (None, None, None)
    """
    print("[LOG] Finding relevant articles...")
    keywords = re.findall(r'\w+', topic.lower())
    print(f"[LOG] Topic keywords: {keywords}")
    
    for item in items:
        title = item.find("title").get_text().strip() if item.find("title") else ""
        description = item.find("description").get_text().strip() if item.find("description") else ""
        text = f"{title.lower()} {description.lower()}"
        matches = sum(1 for kw in keywords if kw in text)
        print(f"[DEBUG] Checking article: '{title}' | Matches: {matches}/{len(keywords)}")
        if matches >= min_match:
            link = item.find("link").get_text().strip() if item.find("link") else ""
            print(f"[LOG] Relevant article found: {title}")
            return title, description, link
    print("[LOG] No relevant articles found based on the current matching criteria.")
    return None, None, None

def fetch_article_text(link: str) -> str:
    print("[LOG] Fetching article text from:", link)
    if not link:
        print("[LOG] No link provided for fetching article text.")
        return ""
    try:
        resp = requests.get(link)
        if resp.status_code != 200:
            print(f"[ERROR] Failed to fetch article from link: {link} with status code {resp.status_code}")
            return ""
        soup = BeautifulSoup(resp.text, 'html.parser')
        # This is site-specific. We'll try a generic approach:
        # Just take all paragraphs:
        paragraphs = soup.find_all("p")
        text = " ".join(p.get_text() for p in paragraphs[:5])  # first 5 paragraphs for more context
        print("[LOG] Article text fetched successfully.")
        return text.strip()
    except Exception as e:
        print(f"[ERROR] Error fetching article text: {e}")
        return ""

def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str):
    print("[LOG] Generating script with tone:", tone, "and length:", target_length)
    groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

    # Map target_length to word ranges
    length_mapping = {
        "1-3 Mins": (200, 450),
        "3-5 Mins": (450, 750),
        "5-10 Mins": (750, 1500),
        "10-20 Mins": (1500, 3000)
    }
    min_words, max_words = length_mapping.get(target_length, (200, 450))

    # Adjust tone description for clarity in prompt
    tone_description = {
        "Humorous": "funny and exciting, makes people chuckle",
        "Formal": "business-like, well-structured, professional",
        "Casual": "like a conversation between close friends, relaxed and informal",
        "Youthful": "like how teenagers might chat, energetic and lively"
    }

    chosen_tone = tone_description.get(tone, "casual")

    # Construct the prompt with clear instructions for JSON output
    prompt = (
        f"{system_prompt}\n"
        f"TONE: {chosen_tone}\n"
        f"TARGET LENGTH: {target_length} ({min_words}-{max_words} words)\n"
        f"INPUT TEXT: {input_text}\n\n"
        "Please provide the output in the following JSON format without any additional text:\n\n"
        "{\n"
        '    "dialogue": [\n'
        '        {\n'
        '            "speaker": "Jane",\n'
        '            "text": "..." \n'
        '        },\n'
        '        {\n'
        '            "speaker": "John",\n'
        '            "text": "..." \n'
        '        }\n'
        "    ]\n"
        "}"
    )
    print("[LOG] Sending prompt to Groq:")
    print(prompt)  # Log the prompt being sent

    try:
        response = groq_client.chat.completions.create(
            messages=[{"role": "system", "content": prompt}],
            model="llama-3.3-70b-versatile",
            max_tokens=2048,
            temperature=0.7
        )
    except Exception as e:
        print("[ERROR] Groq API error:", e)
        raise ValueError(f"Error communicating with Groq API: {str(e)}")

    # Log the raw response content for debugging
    raw_content = response.choices[0].message.content.strip()
    print("[DEBUG] Raw API response content:")
    print(raw_content)

    # Attempt to extract JSON from the response
    content = raw_content.replace('```json', '').replace('```', '').strip()

    start_index = content.find('{')
    end_index = content.rfind('}')

    if start_index == -1 or end_index == -1:
        print("[ERROR] Failed to parse dialogue. No JSON found.")
        print("[ERROR] Entire response content:")
        print(content)
        raise ValueError("Failed to parse dialogue: Could not find JSON object in response.")

    json_str = content[start_index:end_index+1].strip()

    print("[DEBUG] Extracted JSON string:")
    print(json_str)

    try:
        data = json.loads(json_str)
        print("[LOG] Script generated successfully.")
        return Dialogue(**data)
    except json.JSONDecodeError as e:
        print("[ERROR] JSON decoding failed:", e)
        print("[ERROR] Response content causing failure:")
        print(content)
        raise ValueError(f"Failed to parse dialogue: {str(e)}")

def generate_audio_mp3(text: str, speaker: str) -> str:
    try:
        print(f"[LOG] Generating audio for speaker: {speaker}")
        
        # Define Deepgram API endpoint
        deepgram_api_url = "https://api.deepgram.com/v1/speak"

        # Prepare query parameters
        params = {
            "model": "aura-asteria-en",  # Default model; adjust if needed
            # You can add more parameters here as needed, e.g., bit_rate, sample_rate, etc.
        }

        # Override model if needed based on speaker
        if speaker == "Jane":
            params["model"] = "aura-asteria-en"  # Female voice
        elif speaker == "John":
            params["model"] = "aura-perseus-en"  # Male voice
        else:
            raise ValueError(f"Unknown speaker: {speaker}")

        # Prepare headers
        headers = {
            "Accept": "audio/mpeg",  # Request MP3 files
            "Content-Type": "application/json",
            "Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
        }

        # Prepare body
        body = {
            "text": text
        }

        print("[LOG] Sending TTS request to Deepgram...")
        # Make the POST request to Deepgram's TTS API
        response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)

        if response.status_code != 200:
            print(f"[ERROR] Deepgram TTS API returned status code {response.status_code}: {response.text}")
            raise ValueError(f"Deepgram TTS API error: {response.status_code} - {response.text}")

        # Verify Content-Type
        content_type = response.headers.get('Content-Type', '')
        if 'audio/mpeg' not in content_type:
            print("[ERROR] Unexpected Content-Type received from Deepgram:", content_type)
            print("[ERROR] Response content:", response.text)
            raise ValueError("Unexpected Content-Type received from Deepgram.")

        # Save the streamed audio to a temporary MP3 file
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    mp3_file.write(chunk)
            mp3_temp_path = mp3_file.name
            print(f"[LOG] Audio received from Deepgram and saved at: {mp3_temp_path}")

        # Normalize audio volume
        audio_seg = AudioSegment.from_file(mp3_temp_path, format="mp3")
        audio_seg = effects.normalize(audio_seg)

        # Removed pitch shifting for male voice
        # Previously:
        # if speaker == "John":
        #     semitones = -5  # Shift down by 5 semitones for a deeper voice
        #     audio_seg = pitch_shift(audio_seg, semitones=semitones)
        #     print(f"[LOG] Applied pitch shift to John's voice by {semitones} semitones.")

        # Export the final audio as MP3
        final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
        audio_seg.export(final_mp3_path, format="mp3")
        print("[LOG] Audio post-processed and saved at:", final_mp3_path)
        
        # Clean up the initial MP3 file
        if os.path.exists(mp3_temp_path):
            os.remove(mp3_temp_path)
            print(f"[LOG] Removed temporary MP3 file: {mp3_temp_path}")

        return final_mp3_path
    except Exception as e:
        print("[ERROR] Error generating audio:", e)
        raise ValueError(f"Error generating audio: {str(e)}")

def transcribe_youtube_video(video_url: str) -> str:
    print("[LOG] Transcribing YouTube video:", video_url)
    fd, audio_file = tempfile.mkstemp(suffix=".wav")
    os.close(fd)

    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': audio_file,
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'wav',
            'preferredquality': '192'
        }],
        'quiet': True,
        'no_warnings': True,
    }

    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([video_url])
    except yt_dlp.utils.DownloadError as e:
        print("[ERROR] yt-dlp download error:", e)
        raise ValueError(f"Error downloading YouTube video: {str(e)}")

    print("[LOG] Audio downloaded at:", audio_file)
    try:
        # Run ASR on the downloaded audio
        result = asr_pipeline(audio_file)
        transcript = result["text"]
        print("[LOG] Transcription completed.")
        return transcript.strip()
    except Exception as e:
        print("[ERROR] ASR transcription error:", e)
        raise ValueError(f"Error transcribing YouTube video: {str(e)}")
    finally:
        # Clean up the downloaded audio file
        if os.path.exists(audio_file):
            os.remove(audio_file)
            print(f"[LOG] Removed temporary audio file: {audio_file}")