Spaces:
Sleeping
Sleeping
Create utils.py
Browse files
utils.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils.py
|
2 |
+
|
3 |
+
import os
|
4 |
+
import re
|
5 |
+
import json
|
6 |
+
import requests
|
7 |
+
import tempfile
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
from typing import List, Literal
|
10 |
+
from pydantic import BaseModel
|
11 |
+
from pydub import AudioSegment, effects
|
12 |
+
from transformers import pipeline
|
13 |
+
import yt_dlp
|
14 |
+
import tiktoken
|
15 |
+
from groq import Groq # Ensure Groq client is imported
|
16 |
+
import numpy as np
|
17 |
+
import torch # Added to check CUDA availability
|
18 |
+
|
19 |
+
class DialogueItem(BaseModel):
|
20 |
+
speaker: Literal["Jane", "John"]
|
21 |
+
text: str
|
22 |
+
|
23 |
+
class Dialogue(BaseModel):
|
24 |
+
dialogue: List[DialogueItem]
|
25 |
+
|
26 |
+
# Initialize Whisper ASR pipeline
|
27 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=0 if torch.cuda.is_available() else -1)
|
28 |
+
|
29 |
+
def truncate_text(text, max_tokens=2048):
|
30 |
+
print("[LOG] Truncating text if needed.")
|
31 |
+
tokenizer = tiktoken.get_encoding("cl100k_base")
|
32 |
+
tokens = tokenizer.encode(text)
|
33 |
+
if len(tokens) > max_tokens:
|
34 |
+
print("[LOG] Text too long, truncating.")
|
35 |
+
return tokenizer.decode(tokens[:max_tokens])
|
36 |
+
return text
|
37 |
+
|
38 |
+
def extract_text_from_url(url):
|
39 |
+
print("[LOG] Extracting text from URL:", url)
|
40 |
+
try:
|
41 |
+
response = requests.get(url)
|
42 |
+
if response.status_code != 200:
|
43 |
+
print(f"[ERROR] Failed to fetch URL: {url} with status code {response.status_code}")
|
44 |
+
return ""
|
45 |
+
soup = BeautifulSoup(response.text, 'html.parser')
|
46 |
+
for script in soup(["script", "style"]):
|
47 |
+
script.decompose()
|
48 |
+
text = soup.get_text(separator=' ')
|
49 |
+
print("[LOG] Text extraction from URL successful.")
|
50 |
+
return text
|
51 |
+
except Exception as e:
|
52 |
+
print(f"[ERROR] Exception during text extraction from URL: {e}")
|
53 |
+
return ""
|
54 |
+
|
55 |
+
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
|
56 |
+
"""
|
57 |
+
Shifts the pitch of an AudioSegment by a given number of semitones.
|
58 |
+
Positive semitones shift the pitch up, negative shift it down.
|
59 |
+
"""
|
60 |
+
print(f"[LOG] Shifting pitch by {semitones} semitones.")
|
61 |
+
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
|
62 |
+
shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
|
63 |
+
return shifted_audio.set_frame_rate(audio.frame_rate)
|
64 |
+
|
65 |
+
def is_sufficient(text: str, min_word_count: int = 500) -> bool:
|
66 |
+
"""
|
67 |
+
Determines if the fetched information meets the sufficiency criteria.
|
68 |
+
|
69 |
+
:param text: Aggregated text from primary sources.
|
70 |
+
:param min_word_count: Minimum number of words required.
|
71 |
+
:return: True if sufficient, False otherwise.
|
72 |
+
"""
|
73 |
+
word_count = len(text.split())
|
74 |
+
print(f"[DEBUG] Aggregated word count: {word_count}")
|
75 |
+
return word_count >= min_word_count
|
76 |
+
|
77 |
+
def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
78 |
+
"""
|
79 |
+
Queries the Groq API to retrieve additional relevant information from the LLM's knowledge base.
|
80 |
+
|
81 |
+
:param topic: The research topic.
|
82 |
+
:param existing_text: The text already gathered from primary sources.
|
83 |
+
:return: Additional relevant information as a string.
|
84 |
+
"""
|
85 |
+
print("[LOG] Querying LLM for additional information.")
|
86 |
+
# Define the system prompt for the LLM
|
87 |
+
system_prompt = (
|
88 |
+
"You are an AI assistant with extensive knowledge up to 2023-10. "
|
89 |
+
"Provide additional relevant information on the following topic based on your knowledge base.\n\n"
|
90 |
+
f"Topic: {topic}\n\n"
|
91 |
+
f"Existing Information: {existing_text}\n\n"
|
92 |
+
"Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
|
93 |
+
)
|
94 |
+
|
95 |
+
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
96 |
+
|
97 |
+
try:
|
98 |
+
response = groq_client.chat.completions.create(
|
99 |
+
messages=[{"role": "system", "content": system_prompt}],
|
100 |
+
model="llama-3.3-70b-versatile",
|
101 |
+
max_tokens=1024,
|
102 |
+
temperature=0.7
|
103 |
+
)
|
104 |
+
except Exception as e:
|
105 |
+
print("[ERROR] Groq API error during fallback:", e)
|
106 |
+
return ""
|
107 |
+
|
108 |
+
additional_info = response.choices[0].message.content.strip()
|
109 |
+
print("[DEBUG] Additional information from LLM:")
|
110 |
+
print(additional_info)
|
111 |
+
return additional_info
|
112 |
+
|
113 |
+
def research_topic(topic: str) -> str:
|
114 |
+
# Sources:
|
115 |
+
sources = {
|
116 |
+
"BBC": "https://feeds.bbci.co.uk/news/rss.xml",
|
117 |
+
"CNN": "http://rss.cnn.com/rss/edition.rss",
|
118 |
+
"Associated Press": "https://apnews.com/apf-topnews",
|
119 |
+
"NDTV": "https://www.ndtv.com/rss/top-stories",
|
120 |
+
"Times of India": "https://timesofindia.indiatimes.com/rssfeeds/296589292.cms",
|
121 |
+
"The Hindu": "https://www.thehindu.com/news/national/kerala/rssfeed.xml",
|
122 |
+
"Economic Times": "https://economictimes.indiatimes.com/rssfeeds/1977021501.cms",
|
123 |
+
"Google News - Custom": f"https://news.google.com/rss/search?q={requests.utils.quote(topic)}&hl=en-IN&gl=IN&ceid=IN:en",
|
124 |
+
}
|
125 |
+
|
126 |
+
summary_parts = []
|
127 |
+
|
128 |
+
# Wikipedia summary
|
129 |
+
wiki_summary = fetch_wikipedia_summary(topic)
|
130 |
+
if wiki_summary:
|
131 |
+
summary_parts.append(f"From Wikipedia: {wiki_summary}")
|
132 |
+
|
133 |
+
# For each news RSS
|
134 |
+
for name, url in sources.items():
|
135 |
+
try:
|
136 |
+
items = fetch_rss_feed(url)
|
137 |
+
if not items:
|
138 |
+
continue
|
139 |
+
# Use simple keyword matching
|
140 |
+
title, desc, link = find_relevant_article(items, topic, min_match=2)
|
141 |
+
if link:
|
142 |
+
article_text = fetch_article_text(link)
|
143 |
+
if article_text:
|
144 |
+
summary_parts.append(f"From {name}: {article_text}")
|
145 |
+
else:
|
146 |
+
# If no main text extracted, use title/desc
|
147 |
+
summary_parts.append(f"From {name}: {title} - {desc}")
|
148 |
+
except Exception as e:
|
149 |
+
print(f"[ERROR] Error fetching from {name} RSS feed:", e)
|
150 |
+
continue
|
151 |
+
|
152 |
+
aggregated_info = " ".join(summary_parts)
|
153 |
+
print("[DEBUG] Aggregated information from primary sources.")
|
154 |
+
print(aggregated_info)
|
155 |
+
|
156 |
+
if not is_sufficient(aggregated_info):
|
157 |
+
print("[LOG] Insufficient information from primary sources. Initiating fallback to LLM.")
|
158 |
+
additional_info = query_llm_for_additional_info(topic, aggregated_info)
|
159 |
+
if additional_info:
|
160 |
+
aggregated_info += " " + additional_info
|
161 |
+
else:
|
162 |
+
print("[ERROR] Failed to retrieve additional information from LLM.")
|
163 |
+
|
164 |
+
if not aggregated_info:
|
165 |
+
# No info found at all
|
166 |
+
print("[LOG] No information found for the topic.")
|
167 |
+
return f"Sorry, I couldn't find recent information on '{topic}'."
|
168 |
+
|
169 |
+
return aggregated_info
|
170 |
+
|
171 |
+
def fetch_wikipedia_summary(topic: str) -> str:
|
172 |
+
print("[LOG] Fetching Wikipedia summary for:", topic)
|
173 |
+
try:
|
174 |
+
# 1. Search for the topic
|
175 |
+
search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
|
176 |
+
resp = requests.get(search_url)
|
177 |
+
if resp.status_code != 200:
|
178 |
+
print(f"[ERROR] Failed to fetch Wikipedia search results for topic: {topic}")
|
179 |
+
return ""
|
180 |
+
data = resp.json()
|
181 |
+
if len(data) > 1 and data[1]:
|
182 |
+
title = data[1][0]
|
183 |
+
# 2. Fetch summary
|
184 |
+
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
|
185 |
+
s_resp = requests.get(summary_url)
|
186 |
+
if s_resp.status_code == 200:
|
187 |
+
s_data = s_resp.json()
|
188 |
+
if "extract" in s_data:
|
189 |
+
print("[LOG] Wikipedia summary fetched successfully.")
|
190 |
+
return s_data["extract"]
|
191 |
+
print("[LOG] No Wikipedia summary found for topic:", topic)
|
192 |
+
return ""
|
193 |
+
except Exception as e:
|
194 |
+
print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
|
195 |
+
return ""
|
196 |
+
|
197 |
+
def fetch_rss_feed(feed_url: str) -> list:
|
198 |
+
print("[LOG] Fetching RSS feed:", feed_url)
|
199 |
+
try:
|
200 |
+
resp = requests.get(feed_url)
|
201 |
+
if resp.status_code != 200:
|
202 |
+
print(f"[ERROR] Failed to fetch RSS feed: {feed_url} with status code {resp.status_code}")
|
203 |
+
return []
|
204 |
+
# Use html.parser instead of xml to avoid needing lxml or other parsers.
|
205 |
+
soup = BeautifulSoup(resp.content, "html.parser")
|
206 |
+
items = soup.find_all("item")
|
207 |
+
print(f"[LOG] Number of items fetched from {feed_url}: {len(items)}")
|
208 |
+
return items
|
209 |
+
except Exception as e:
|
210 |
+
print(f"[ERROR] Exception occurred while fetching RSS feed {feed_url}: {e}")
|
211 |
+
return []
|
212 |
+
|
213 |
+
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
214 |
+
"""
|
215 |
+
Searches for relevant articles based on topic keywords.
|
216 |
+
:param items: List of RSS feed items
|
217 |
+
:param topic: Topic string
|
218 |
+
:param min_match: Minimum number of keyword matches required
|
219 |
+
:return: (title, description, link) or (None, None, None)
|
220 |
+
"""
|
221 |
+
print("[LOG] Finding relevant articles...")
|
222 |
+
keywords = re.findall(r'\w+', topic.lower())
|
223 |
+
print(f"[LOG] Topic keywords: {keywords}")
|
224 |
+
|
225 |
+
for item in items:
|
226 |
+
title = item.find("title").get_text().strip() if item.find("title") else ""
|
227 |
+
description = item.find("description").get_text().strip() if item.find("description") else ""
|
228 |
+
text = f"{title.lower()} {description.lower()}"
|
229 |
+
matches = sum(1 for kw in keywords if kw in text)
|
230 |
+
print(f"[DEBUG] Checking article: '{title}' | Matches: {matches}/{len(keywords)}")
|
231 |
+
if matches >= min_match:
|
232 |
+
link = item.find("link").get_text().strip() if item.find("link") else ""
|
233 |
+
print(f"[LOG] Relevant article found: {title}")
|
234 |
+
return title, description, link
|
235 |
+
print("[LOG] No relevant articles found based on the current matching criteria.")
|
236 |
+
return None, None, None
|
237 |
+
|
238 |
+
def fetch_article_text(link: str) -> str:
|
239 |
+
print("[LOG] Fetching article text from:", link)
|
240 |
+
if not link:
|
241 |
+
print("[LOG] No link provided for fetching article text.")
|
242 |
+
return ""
|
243 |
+
try:
|
244 |
+
resp = requests.get(link)
|
245 |
+
if resp.status_code != 200:
|
246 |
+
print(f"[ERROR] Failed to fetch article from link: {link} with status code {resp.status_code}")
|
247 |
+
return ""
|
248 |
+
soup = BeautifulSoup(resp.text, 'html.parser')
|
249 |
+
# This is site-specific. We'll try a generic approach:
|
250 |
+
# Just take all paragraphs:
|
251 |
+
paragraphs = soup.find_all("p")
|
252 |
+
text = " ".join(p.get_text() for p in paragraphs[:5]) # first 5 paragraphs for more context
|
253 |
+
print("[LOG] Article text fetched successfully.")
|
254 |
+
return text.strip()
|
255 |
+
except Exception as e:
|
256 |
+
print(f"[ERROR] Error fetching article text: {e}")
|
257 |
+
return ""
|
258 |
+
|
259 |
+
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str):
|
260 |
+
print("[LOG] Generating script with tone:", tone, "and length:", target_length)
|
261 |
+
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
262 |
+
|
263 |
+
# Map target_length to word ranges
|
264 |
+
length_mapping = {
|
265 |
+
"1-3 Mins": (200, 450),
|
266 |
+
"3-5 Mins": (450, 750),
|
267 |
+
"5-10 Mins": (750, 1500),
|
268 |
+
"10-20 Mins": (1500, 3000)
|
269 |
+
}
|
270 |
+
min_words, max_words = length_mapping.get(target_length, (200, 450))
|
271 |
+
|
272 |
+
# Adjust tone description for clarity in prompt
|
273 |
+
tone_description = {
|
274 |
+
"Humorous": "funny and exciting, makes people chuckle",
|
275 |
+
"Formal": "business-like, well-structured, professional",
|
276 |
+
"Casual": "like a conversation between close friends, relaxed and informal",
|
277 |
+
"Youthful": "like how teenagers might chat, energetic and lively"
|
278 |
+
}
|
279 |
+
|
280 |
+
chosen_tone = tone_description.get(tone, "casual")
|
281 |
+
|
282 |
+
# Construct the prompt with clear instructions for JSON output
|
283 |
+
prompt = (
|
284 |
+
f"{system_prompt}\n"
|
285 |
+
f"TONE: {chosen_tone}\n"
|
286 |
+
f"TARGET LENGTH: {target_length} ({min_words}-{max_words} words)\n"
|
287 |
+
f"INPUT TEXT: {input_text}\n\n"
|
288 |
+
"Please provide the output in the following JSON format without any additional text:\n\n"
|
289 |
+
"{\n"
|
290 |
+
' "dialogue": [\n'
|
291 |
+
' {\n'
|
292 |
+
' "speaker": "Jane",\n'
|
293 |
+
' "text": "..." \n'
|
294 |
+
' },\n'
|
295 |
+
' {\n'
|
296 |
+
' "speaker": "John",\n'
|
297 |
+
' "text": "..." \n'
|
298 |
+
' }\n'
|
299 |
+
" ]\n"
|
300 |
+
"}"
|
301 |
+
)
|
302 |
+
print("[LOG] Sending prompt to Groq:")
|
303 |
+
print(prompt) # Log the prompt being sent
|
304 |
+
|
305 |
+
try:
|
306 |
+
response = groq_client.chat.completions.create(
|
307 |
+
messages=[{"role": "system", "content": prompt}],
|
308 |
+
model="llama-3.3-70b-versatile",
|
309 |
+
max_tokens=2048,
|
310 |
+
temperature=0.7
|
311 |
+
)
|
312 |
+
except Exception as e:
|
313 |
+
print("[ERROR] Groq API error:", e)
|
314 |
+
raise ValueError(f"Error communicating with Groq API: {str(e)}")
|
315 |
+
|
316 |
+
# Log the raw response content for debugging
|
317 |
+
raw_content = response.choices[0].message.content.strip()
|
318 |
+
print("[DEBUG] Raw API response content:")
|
319 |
+
print(raw_content)
|
320 |
+
|
321 |
+
# Attempt to extract JSON from the response
|
322 |
+
content = raw_content.replace('```json', '').replace('```', '').strip()
|
323 |
+
|
324 |
+
start_index = content.find('{')
|
325 |
+
end_index = content.rfind('}')
|
326 |
+
|
327 |
+
if start_index == -1 or end_index == -1:
|
328 |
+
print("[ERROR] Failed to parse dialogue. No JSON found.")
|
329 |
+
print("[ERROR] Entire response content:")
|
330 |
+
print(content)
|
331 |
+
raise ValueError("Failed to parse dialogue: Could not find JSON object in response.")
|
332 |
+
|
333 |
+
json_str = content[start_index:end_index+1].strip()
|
334 |
+
|
335 |
+
print("[DEBUG] Extracted JSON string:")
|
336 |
+
print(json_str)
|
337 |
+
|
338 |
+
try:
|
339 |
+
data = json.loads(json_str)
|
340 |
+
print("[LOG] Script generated successfully.")
|
341 |
+
return Dialogue(**data)
|
342 |
+
except json.JSONDecodeError as e:
|
343 |
+
print("[ERROR] JSON decoding failed:", e)
|
344 |
+
print("[ERROR] Response content causing failure:")
|
345 |
+
print(content)
|
346 |
+
raise ValueError(f"Failed to parse dialogue: {str(e)}")
|
347 |
+
|
348 |
+
def generate_audio_mp3(text: str, speaker: str) -> str:
|
349 |
+
try:
|
350 |
+
print(f"[LOG] Generating audio for speaker: {speaker}")
|
351 |
+
|
352 |
+
# Define Deepgram API endpoint
|
353 |
+
deepgram_api_url = "https://api.deepgram.com/v1/speak"
|
354 |
+
|
355 |
+
# Prepare query parameters
|
356 |
+
params = {
|
357 |
+
"model": "aura-asteria-en", # Default model; adjust if needed
|
358 |
+
# You can add more parameters here as needed, e.g., bit_rate, sample_rate, etc.
|
359 |
+
}
|
360 |
+
|
361 |
+
# Override model if needed based on speaker
|
362 |
+
if speaker == "Jane":
|
363 |
+
params["model"] = "aura-asteria-en" # Female voice
|
364 |
+
elif speaker == "John":
|
365 |
+
params["model"] = "aura-perseus-en" # Male voice
|
366 |
+
else:
|
367 |
+
raise ValueError(f"Unknown speaker: {speaker}")
|
368 |
+
|
369 |
+
# Prepare headers
|
370 |
+
headers = {
|
371 |
+
"Accept": "audio/mpeg", # Request MP3 files
|
372 |
+
"Content-Type": "application/json",
|
373 |
+
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
|
374 |
+
}
|
375 |
+
|
376 |
+
# Prepare body
|
377 |
+
body = {
|
378 |
+
"text": text
|
379 |
+
}
|
380 |
+
|
381 |
+
print("[LOG] Sending TTS request to Deepgram...")
|
382 |
+
# Make the POST request to Deepgram's TTS API
|
383 |
+
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
384 |
+
|
385 |
+
if response.status_code != 200:
|
386 |
+
print(f"[ERROR] Deepgram TTS API returned status code {response.status_code}: {response.text}")
|
387 |
+
raise ValueError(f"Deepgram TTS API error: {response.status_code} - {response.text}")
|
388 |
+
|
389 |
+
# Verify Content-Type
|
390 |
+
content_type = response.headers.get('Content-Type', '')
|
391 |
+
if 'audio/mpeg' not in content_type:
|
392 |
+
print("[ERROR] Unexpected Content-Type received from Deepgram:", content_type)
|
393 |
+
print("[ERROR] Response content:", response.text)
|
394 |
+
raise ValueError("Unexpected Content-Type received from Deepgram.")
|
395 |
+
|
396 |
+
# Save the streamed audio to a temporary MP3 file
|
397 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
|
398 |
+
for chunk in response.iter_content(chunk_size=8192):
|
399 |
+
if chunk:
|
400 |
+
mp3_file.write(chunk)
|
401 |
+
mp3_temp_path = mp3_file.name
|
402 |
+
print(f"[LOG] Audio received from Deepgram and saved at: {mp3_temp_path}")
|
403 |
+
|
404 |
+
# Normalize audio volume
|
405 |
+
audio_seg = AudioSegment.from_file(mp3_temp_path, format="mp3")
|
406 |
+
audio_seg = effects.normalize(audio_seg)
|
407 |
+
|
408 |
+
# Removed pitch shifting for male voice
|
409 |
+
# Previously:
|
410 |
+
# if speaker == "John":
|
411 |
+
# semitones = -5 # Shift down by 5 semitones for a deeper voice
|
412 |
+
# audio_seg = pitch_shift(audio_seg, semitones=semitones)
|
413 |
+
# print(f"[LOG] Applied pitch shift to John's voice by {semitones} semitones.")
|
414 |
+
|
415 |
+
# Export the final audio as MP3
|
416 |
+
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
417 |
+
audio_seg.export(final_mp3_path, format="mp3")
|
418 |
+
print("[LOG] Audio post-processed and saved at:", final_mp3_path)
|
419 |
+
|
420 |
+
# Clean up the initial MP3 file
|
421 |
+
if os.path.exists(mp3_temp_path):
|
422 |
+
os.remove(mp3_temp_path)
|
423 |
+
print(f"[LOG] Removed temporary MP3 file: {mp3_temp_path}")
|
424 |
+
|
425 |
+
return final_mp3_path
|
426 |
+
except Exception as e:
|
427 |
+
print("[ERROR] Error generating audio:", e)
|
428 |
+
raise ValueError(f"Error generating audio: {str(e)}")
|
429 |
+
|
430 |
+
def transcribe_youtube_video(video_url: str) -> str:
|
431 |
+
print("[LOG] Transcribing YouTube video:", video_url)
|
432 |
+
fd, audio_file = tempfile.mkstemp(suffix=".wav")
|
433 |
+
os.close(fd)
|
434 |
+
|
435 |
+
ydl_opts = {
|
436 |
+
'format': 'bestaudio/best',
|
437 |
+
'outtmpl': audio_file,
|
438 |
+
'postprocessors': [{
|
439 |
+
'key': 'FFmpegExtractAudio',
|
440 |
+
'preferredcodec': 'wav',
|
441 |
+
'preferredquality': '192'
|
442 |
+
}],
|
443 |
+
'quiet': True,
|
444 |
+
'no_warnings': True,
|
445 |
+
}
|
446 |
+
|
447 |
+
try:
|
448 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
449 |
+
ydl.download([video_url])
|
450 |
+
except yt_dlp.utils.DownloadError as e:
|
451 |
+
print("[ERROR] yt-dlp download error:", e)
|
452 |
+
raise ValueError(f"Error downloading YouTube video: {str(e)}")
|
453 |
+
|
454 |
+
print("[LOG] Audio downloaded at:", audio_file)
|
455 |
+
try:
|
456 |
+
# Run ASR on the downloaded audio
|
457 |
+
result = asr_pipeline(audio_file)
|
458 |
+
transcript = result["text"]
|
459 |
+
print("[LOG] Transcription completed.")
|
460 |
+
return transcript.strip()
|
461 |
+
except Exception as e:
|
462 |
+
print("[ERROR] ASR transcription error:", e)
|
463 |
+
raise ValueError(f"Error transcribing YouTube video: {str(e)}")
|
464 |
+
finally:
|
465 |
+
# Clean up the downloaded audio file
|
466 |
+
if os.path.exists(audio_file):
|
467 |
+
os.remove(audio_file)
|
468 |
+
print(f"[LOG] Removed temporary audio file: {audio_file}")
|