Spaces:
Running
Running
# utils.py | |
import os | |
import re | |
import json | |
import requests | |
import tempfile | |
from bs4 import BeautifulSoup | |
from typing import List, Literal | |
from pydantic import BaseModel | |
from pydub import AudioSegment, effects | |
from transformers import pipeline | |
import yt_dlp | |
import tiktoken | |
from groq import Groq | |
import numpy as np | |
import torch | |
import random | |
from num2words import num2words # For robust number-to-words conversion | |
class DialogueItem(BaseModel): | |
speaker: Literal["Jane", "John"] # TTS voice | |
display_speaker: str = "Jane" # For display in transcript | |
text: str | |
class Dialogue(BaseModel): | |
dialogue: List[DialogueItem] | |
# Initialize Whisper (unused for YouTube with RapidAPI) | |
asr_pipeline = pipeline( | |
"automatic-speech-recognition", | |
model="openai/whisper-tiny.en", | |
device=0 if torch.cuda.is_available() else -1 | |
) | |
def truncate_text(text, max_tokens=2048): | |
""" | |
If the text exceeds the max token limit (approx. 2,048), truncate it | |
to avoid exceeding the model's context window. | |
""" | |
print("[LOG] Truncating text if needed.") | |
tokenizer = tiktoken.get_encoding("cl100k_base") | |
tokens = tokenizer.encode(text) | |
if len(tokens) > max_tokens: | |
print("[LOG] Text too long, truncating.") | |
return tokenizer.decode(tokens[:max_tokens]) | |
return text | |
def extract_text_from_url(url): | |
""" | |
Fetches and extracts readable text from a given URL | |
(stripping out scripts, styles, etc.). | |
""" | |
print("[LOG] Extracting text from URL:", url) | |
try: | |
headers = { | |
"User-Agent": ( | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) " | |
"AppleWebKit/537.36 (KHTML, like Gecko) " | |
"Chrome/115.0.0.0 Safari/537.36" | |
) | |
} | |
response = requests.get(url, headers=headers) | |
if response.status_code != 200: | |
print(f"[ERROR] Failed to fetch URL: {url} with status code {response.status_code}") | |
return "" | |
soup = BeautifulSoup(response.text, 'html.parser') | |
for script in soup(["script", "style"]): | |
script.decompose() | |
text = soup.get_text(separator=' ') | |
print("[LOG] Text extraction from URL successful.") | |
return text | |
except Exception as e: | |
print(f"[ERROR] Exception during text extraction from URL: {e}") | |
return "" | |
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment: | |
""" | |
Shifts the pitch of an AudioSegment by a given number of semitones. | |
Positive semitones shift the pitch up, negative shifts it down. | |
""" | |
print(f"[LOG] Shifting pitch by {semitones} semitones.") | |
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0))) | |
shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate}) | |
return shifted_audio.set_frame_rate(audio.frame_rate) | |
def is_sufficient(text: str, min_word_count: int = 500) -> bool: | |
""" | |
Checks if the fetched text meets our sufficiency criteria | |
(e.g., at least 500 words). | |
""" | |
word_count = len(text.split()) | |
print(f"[DEBUG] Aggregated word count: {word_count}") | |
return word_count >= min_word_count | |
def query_llm_for_additional_info(topic: str, existing_text: str) -> str: | |
""" | |
Queries the Groq API to retrieve more info from the LLM's knowledge base. | |
Appends it to our aggregated info if found. | |
""" | |
print("[LOG] Querying LLM for additional information.") | |
system_prompt = ( | |
"You are an AI assistant with extensive knowledge up to 2023-10. " | |
"Provide additional relevant information on the following topic based on your knowledge base.\n\n" | |
f"Topic: {topic}\n\n" | |
f"Existing Information: {existing_text}\n\n" | |
"Please add more insightful details, facts, and perspectives to enhance the understanding of the topic." | |
) | |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY")) | |
try: | |
response = groq_client.chat.completions.create( | |
messages=[{"role": "system", "content": system_prompt}], | |
model="llama-3.3-70b-versatile", | |
max_tokens=1024, | |
temperature=0.7 | |
) | |
except Exception as e: | |
print("[ERROR] Groq API error during fallback:", e) | |
return "" | |
additional_info = response.choices[0].message.content.strip() | |
print("[DEBUG] Additional information from LLM:") | |
print(additional_info) | |
return additional_info | |
def research_topic(topic: str) -> str: | |
""" | |
Gathers info from various RSS feeds and Wikipedia. If needed, queries the LLM | |
for more data if the aggregated text is insufficient. | |
""" | |
sources = { | |
"BBC": "https://feeds.bbci.co.uk/news/rss.xml", | |
"CNN": "http://rss.cnn.com/rss/edition.rss", | |
"Associated Press": "https://apnews.com/apf-topnews", | |
"NDTV": "https://www.ndtv.com/rss/top-stories", | |
"Times of India": "https://timesofindia.indiatimes.com/rssfeeds/296589292.cms", | |
"The Hindu": "https://www.thehindu.com/news/national/kerala/rssfeed.xml", | |
"Economic Times": "https://economictimes.indiatimes.com/rssfeeds/1977021501.cms", | |
"Google News - Custom": f"https://news.google.com/rss/search?q={requests.utils.quote(topic)}&hl=en-IN&gl=IN&ceid=IN:en", | |
} | |
summary_parts = [] | |
# Wikipedia summary | |
wiki_summary = fetch_wikipedia_summary(topic) | |
if wiki_summary: | |
summary_parts.append(f"From Wikipedia: {wiki_summary}") | |
# For each RSS feed | |
for name, feed_url in sources.items(): | |
try: | |
items = fetch_rss_feed(feed_url) | |
if not items: | |
continue | |
title, desc, link = find_relevant_article(items, topic, min_match=2) | |
if link: | |
article_text = fetch_article_text(link) | |
if article_text: | |
summary_parts.append(f"From {name}: {article_text}") | |
else: | |
summary_parts.append(f"From {name}: {title} - {desc}") | |
except Exception as e: | |
print(f"[ERROR] Error fetching from {name} RSS feed:", e) | |
continue | |
aggregated_info = " ".join(summary_parts) | |
print("[DEBUG] Aggregated info from primary sources:") | |
print(aggregated_info) | |
# If not enough data, fallback to LLM | |
if not is_sufficient(aggregated_info): | |
print("[LOG] Insufficient info from primary sources. Fallback to LLM.") | |
additional_info = query_llm_for_additional_info(topic, aggregated_info) | |
if additional_info: | |
aggregated_info += " " + additional_info | |
else: | |
print("[ERROR] Failed to retrieve additional info from LLM.") | |
if not aggregated_info: | |
return f"Sorry, I couldn't find recent information on '{topic}'." | |
return aggregated_info | |
def fetch_wikipedia_summary(topic: str) -> str: | |
""" | |
Fetch a quick Wikipedia summary of the topic via the official Wikipedia API. | |
""" | |
print("[LOG] Fetching Wikipedia summary for:", topic) | |
try: | |
search_url = ( | |
f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}" | |
"&limit=1&namespace=0&format=json" | |
) | |
resp = requests.get(search_url) | |
if resp.status_code != 200: | |
print(f"[ERROR] Failed to fetch Wikipedia search results for {topic}") | |
return "" | |
data = resp.json() | |
if len(data) > 1 and data[1]: | |
title = data[1][0] | |
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}" | |
s_resp = requests.get(summary_url) | |
if s_resp.status_code == 200: | |
s_data = s_resp.json() | |
if "extract" in s_data: | |
print("[LOG] Wikipedia summary fetched successfully.") | |
return s_data["extract"] | |
return "" | |
except Exception as e: | |
print(f"[ERROR] Exception during Wikipedia summary fetch: {e}") | |
return "" | |
def fetch_rss_feed(feed_url: str) -> list: | |
""" | |
Pulls RSS feed data from a given URL and returns items. | |
""" | |
print("[LOG] Fetching RSS feed:", feed_url) | |
try: | |
resp = requests.get(feed_url) | |
if resp.status_code != 200: | |
print(f"[ERROR] Failed to fetch RSS feed: {feed_url}") | |
return [] | |
soup = BeautifulSoup(resp.content, "xml") | |
items = soup.find_all("item") | |
return items | |
except Exception as e: | |
print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}") | |
return [] | |
def find_relevant_article(items, topic: str, min_match=2) -> tuple: | |
""" | |
Check each article in the RSS feed for mention of the topic | |
by counting the number of keyword matches. | |
""" | |
print("[LOG] Finding relevant articles...") | |
keywords = re.findall(r'\w+', topic.lower()) | |
for item in items: | |
title = item.find("title").get_text().strip() if item.find("title") else "" | |
description = item.find("description").get_text().strip() if item.find("description") else "" | |
text = (title + " " + description).lower() | |
matches = sum(1 for kw in keywords if kw in text) | |
if matches >= min_match: | |
link = item.find("link").get_text().strip() if item.find("link") else "" | |
print(f"[LOG] Relevant article found: {title}") | |
return title, description, link | |
return None, None, None | |
def fetch_article_text(link: str) -> str: | |
""" | |
Fetch the article text from the given link (first 5 paragraphs). | |
""" | |
print("[LOG] Fetching article text from:", link) | |
if not link: | |
print("[LOG] No link provided for article text.") | |
return "" | |
try: | |
resp = requests.get(link) | |
if resp.status_code != 200: | |
print(f"[ERROR] Failed to fetch article from {link}") | |
return "" | |
soup = BeautifulSoup(resp.text, 'html.parser') | |
paragraphs = soup.find_all("p") | |
text = " ".join(p.get_text() for p in paragraphs[:5]) # first 5 paragraphs | |
print("[LOG] Article text fetched successfully.") | |
return text.strip() | |
except Exception as e: | |
print(f"[ERROR] Error fetching article text: {e}") | |
return "" | |
# Updated generate_script signature to accept extra arguments without using them | |
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str, | |
host_name: str = "Jane", guest_name: str = "John", | |
sponsor_style: str = "Separate Break", sponsor_provided: bool = False): | |
print("[LOG] Generating script with tone:", tone, "and length:", target_length) | |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY")) | |
# Map length string to word ranges | |
length_mapping = { | |
"1-3 Mins": (200, 450), | |
"3-5 Mins": (450, 750), | |
"5-10 Mins": (750, 1500), | |
"10-20 Mins": (1500, 3000) | |
} | |
min_words, max_words = length_mapping.get(target_length, (200, 450)) | |
tone_description = { | |
"Humorous": "funny and exciting, makes people chuckle", | |
"Formal": "business-like, well-structured, professional", | |
"Casual": "like a conversation between close friends, relaxed and informal", | |
"Youthful": "like how teenagers might chat, energetic and lively" | |
} | |
chosen_tone = tone_description.get(tone, "casual") | |
# Construct prompt | |
prompt = ( | |
f"{system_prompt}\n" | |
f"TONE: {chosen_tone}\n" | |
f"TARGET LENGTH: {target_length} ({min_words}-{max_words} words)\n" | |
f"INPUT TEXT: {input_text}\n\n" | |
"Please provide the output in the following JSON format without any additional text:\n\n" | |
"{\n" | |
' "dialogue": [\n' | |
' {\n' | |
' "speaker": "Jane",\n' | |
' "text": "..." \n' | |
' },\n' | |
' {\n' | |
' "speaker": "John",\n' | |
' "text": "..." \n' | |
' }\n' | |
" ]\n" | |
"}" | |
) | |
print("[LOG] Sending prompt to Groq:") | |
print(prompt) | |
try: | |
response = groq_client.chat.completions.create( | |
messages=[{"role": "system", "content": prompt}], | |
model="llama-3.3-70b-versatile", | |
max_tokens=2048, | |
temperature=0.7 | |
) | |
except Exception as e: | |
print("[ERROR] Groq API error:", e) | |
raise ValueError(f"Error communicating with Groq API: {str(e)}") | |
raw_content = response.choices[0].message.content.strip() | |
# Attempt to parse JSON | |
start_index = raw_content.find('{') | |
end_index = raw_content.rfind('}') | |
if start_index == -1 or end_index == -1: | |
raise ValueError("Failed to parse dialogue: No JSON found.") | |
json_str = raw_content[start_index:end_index+1].strip() | |
try: | |
data = json.loads(json_str) | |
return Dialogue(**data) | |
except Exception as e: | |
print("[ERROR] JSON decoding failed:", e) | |
raise ValueError(f"Failed to parse dialogue: {str(e)}") | |
# ---------------------------------------------------------------------- | |
# REPLACE the YTDLP-based approach with the RapidAPI approach | |
# ---------------------------------------------------------------------- | |
def transcribe_youtube_video(video_url: str) -> str: | |
""" | |
Transcribe the given YouTube video by calling the RapidAPI 'youtube-transcriptor' endpoint. | |
1) Extract the 11-char video ID from the YouTube URL. | |
2) Call the RapidAPI endpoint (lang=en). | |
3) Parse and extract 'transcriptionAsText' from the response. | |
4) Return that transcript as a string. | |
""" | |
print("[LOG] Transcribing YouTube video via RapidAPI:", video_url) | |
# Extract video ID | |
video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11})", video_url) | |
if not video_id_match: | |
raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.") | |
video_id = video_id_match.group(1) | |
print("[LOG] Extracted video ID:", video_id) | |
base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript" | |
params = { | |
"video_id": video_id, | |
"lang": "en" | |
} | |
headers = { | |
"x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com", | |
"x-rapidapi-key": os.environ.get("RAPIDAPI_KEY") | |
} | |
try: | |
response = requests.get(base_url, headers=headers, params=params, timeout=30) | |
print("[LOG] RapidAPI Response Status Code:", response.status_code) | |
print("[LOG] RapidAPI Response Body:", response.text) # Log the full response | |
if response.status_code != 200: | |
raise ValueError(f"RapidAPI transcription error: {response.status_code}, {response.text}") | |
data = response.json() | |
if not isinstance(data, list) or not data: | |
raise ValueError(f"Unexpected transcript format or empty transcript: {data}") | |
# Extract 'transcriptionAsText' | |
transcript_as_text = data[0].get('transcriptionAsText', '').strip() | |
if not transcript_as_text: | |
raise ValueError("transcriptionAsText field is missing or empty.") | |
print("[LOG] Transcript retrieval successful.") | |
print(f"[DEBUG] Transcript Length: {len(transcript_as_text)} characters.") | |
# Optionally, print a snippet of the transcript | |
if len(transcript_as_text) > 200: | |
snippet = transcript_as_text[:200] + "..." | |
else: | |
snippet = transcript_as_text | |
print(f"[DEBUG] Transcript Snippet: {snippet}") | |
return transcript_as_text | |
except Exception as e: | |
print("[ERROR] RapidAPI transcription error:", e) | |
raise ValueError(f"Error transcribing YouTube video via RapidAPI: {str(e)}") | |
def generate_audio_mp3(text: str, speaker: str) -> str: | |
""" | |
Calls Deepgram TTS with the text, returning a path to a temp MP3 file. | |
We also do some pre-processing for punctuation, abbreviations, etc. | |
""" | |
try: | |
print(f"[LOG] Generating audio for speaker: {speaker}") | |
# Preprocess text with speaker context | |
processed_text = _preprocess_text_for_tts(text, speaker) | |
deepgram_api_url = "https://api.deepgram.com/v1/speak" | |
params = { | |
"model": "aura-asteria-en", # default | |
} | |
if speaker == "John": | |
params["model"] = "aura-zeus-en" | |
headers = { | |
"Accept": "audio/mpeg", | |
"Content-Type": "application/json", | |
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}" | |
} | |
body = { | |
"text": processed_text | |
} | |
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True) | |
if response.status_code != 200: | |
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}") | |
content_type = response.headers.get('Content-Type', '') | |
if 'audio/mpeg' not in content_type: | |
raise ValueError("Unexpected Content-Type from Deepgram.") | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file: | |
for chunk in response.iter_content(chunk_size=8192): | |
if chunk: | |
mp3_file.write(chunk) | |
mp3_path = mp3_file.name | |
# Normalize volume | |
audio_seg = AudioSegment.from_file(mp3_path, format="mp3") | |
audio_seg = effects.normalize(audio_seg) | |
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name | |
audio_seg.export(final_mp3_path, format="mp3") | |
if os.path.exists(mp3_path): | |
os.remove(mp3_path) | |
return final_mp3_path | |
except Exception as e: | |
print("[ERROR] Error generating audio:", e) | |
raise ValueError(f"Error generating audio: {str(e)}") | |
def transcribe_youtube_video_OLD_YTDLP(video_url: str) -> str: | |
""" | |
Original ytdlp-based approach for local transcription. | |
No longer used, but kept for reference. | |
""" | |
pass | |
# --------------------------------------------------------------------- | |
# TEXT PRE-PROCESSING FOR NATURAL TTS (punctuation, abbreviations, etc.) | |
# --------------------------------------------------------------------- | |
def _preprocess_text_for_tts(text: str, speaker: str) -> str: | |
""" | |
Enhances text for natural-sounding TTS by handling abbreviations, | |
punctuation, and intelligent filler insertion. | |
Adjustments are made based on the speaker to optimize output quality. | |
""" | |
# 1) Hyphens -> spaces | |
text = re.sub(r"-", " ", text) | |
# 2) Convert decimals (e.g., 3.14 -> 'three point one four') | |
def convert_decimal(m): | |
number_str = m.group() | |
parts = number_str.split('.') | |
whole_part = _spell_digits(parts[0]) | |
decimal_part = " ".join(_spell_digits(d) for d in parts[1]) | |
return f"{whole_part} point {decimal_part}" | |
text = re.sub(r"\d+\.\d+", convert_decimal, text) | |
# 3) Abbreviations (e.g., NASA -> N A S A, MPs -> M Peas) | |
def expand_abbreviations(match): | |
abbrev = match.group() | |
# Check if it's a plural abbreviation | |
if abbrev.endswith('s') and abbrev[:-1].isupper(): | |
singular = abbrev[:-1] | |
expanded = " ".join(list(singular)) + "s" # Append 's' to the expanded form | |
# Handle specific plural forms | |
specific_plural = { | |
"MPs": "M Peas", | |
"TMTs": "T M Tees", | |
"ARJs": "A R Jays", | |
# Add more as needed | |
} | |
return specific_plural.get(abbrev, expanded) | |
else: | |
return " ".join(list(abbrev)) | |
# Regex to match abbreviations (all uppercase letters, possibly ending with 's') | |
text = re.sub(r"\b[A-Z]{2,}s?\b", expand_abbreviations, text) | |
# 4) Removed ellipsis insertion after punctuation to reduce long pauses | |
# These lines have been removed: | |
# text = re.sub(r"\.(\s|$)", r"...\1", text) | |
# text = re.sub(r",(\s|$)", r",...\1", text) | |
# text = re.sub(r"\?(\s|$)", r"?...\1", text) | |
# 5) Intelligent filler insertion after specific keywords (skip for Jane) | |
if speaker != "Jane": | |
def insert_thinking_pause(m): | |
word = m.group(1) | |
# Decide randomly whether to insert a filler | |
if random.random() < 0.3: # 30% chance | |
filler = random.choice(['hmm,', 'well,', 'let me see,']) | |
return f"{word}..., {filler}" | |
else: | |
return f"{word}...," | |
keywords_pattern = r"\b(important|significant|crucial|point|topic)\b" | |
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE) | |
# 6) Insert dynamic pauses within sentences (e.g., after conjunctions) for non-Jane speakers | |
if speaker != "Jane": | |
conjunctions_pattern = r"\b(and|but|so|because|however)\b" | |
text = re.sub(conjunctions_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE) | |
# 7) Remove any unintended random fillers (safeguard) | |
text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE) | |
# 8) Ensure normal grammar and speaking style | |
def capitalize_match(match): | |
return match.group().upper() | |
text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_match, text) | |
return text.strip() | |
def _spell_digits(d: str) -> str: | |
""" | |
Convert digits '3' -> 'three', etc. | |
""" | |
digit_map = { | |
'0': 'zero', | |
'1': 'one', | |
'2': 'two', | |
'3': 'three', | |
'4': 'four', | |
'5': 'five', | |
'6': 'six', | |
'7': 'seven', | |
'8': 'eight', | |
'9': 'nine' | |
} | |
return " ".join(digit_map[ch] for ch in d if ch in digit_map) | |
def mix_with_bg_music(spoken: AudioSegment) -> AudioSegment: | |
""" | |
Mixes 'spoken' with bg_music.mp3 in the root folder: | |
1) Start with 2 seconds of music alone before speech begins. | |
2) Loop the music if it's shorter than the final audio length. | |
3) Lower the music volume so the speech is clear. | |
""" | |
bg_music_path = "bg_music.mp3" # in root folder | |
try: | |
bg_music = AudioSegment.from_file(bg_music_path, format="mp3") | |
except Exception as e: | |
print("[ERROR] Failed to load background music:", e) | |
return spoken | |
# Reduce background music volume further | |
bg_music = bg_music - 18.0 # Lower volume (e.g. -18 dB) | |
total_length_ms = len(spoken) + 2000 | |
looped_music = AudioSegment.empty() | |
while len(looped_music) < total_length_ms: | |
looped_music += bg_music | |
looped_music = looped_music[:total_length_ms] | |
# Overlay spoken at 2000ms so we get 2s of music first | |
final_mix = looped_music.overlay(spoken, position=2000) | |
return final_mix | |