File size: 22,708 Bytes
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6cb3c2
2433b60
 
44dc0ac
 
2433b60
 
 
 
 
44dc0ac
2433b60
 
 
 
 
 
 
44dc0ac
 
 
 
2433b60
 
 
 
 
 
 
 
 
44dc0ac
 
 
 
2433b60
 
1dc995c
 
 
 
 
 
 
 
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
 
 
 
2433b60
 
 
 
 
 
44dc0ac
 
 
 
2433b60
 
 
 
 
44dc0ac
 
 
 
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
 
 
 
2433b60
 
 
 
 
 
 
 
 
 
aacfe72
2433b60
 
aacfe72
2433b60
 
 
 
44dc0ac
ed4e888
2433b60
ed4e888
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
 
 
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
 
 
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
 
 
 
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
 
 
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd33a2f
 
 
 
2433b60
 
 
5c2eef5
 
 
 
 
 
 
 
2433b60
5c2eef5
2433b60
 
 
 
 
5c2eef5
2752da2
5c2eef5
2433b60
 
 
5c2eef5
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2eef5
2433b60
 
 
 
 
 
 
 
5c2eef5
2433b60
 
 
 
5c2eef5
 
 
2433b60
5c2eef5
 
 
 
 
 
 
2433b60
5c2eef5
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2eef5
2433b60
 
 
 
 
 
 
 
5c2eef5
2433b60
 
 
 
 
 
5c2eef5
 
 
 
 
 
2433b60
 
 
44dc0ac
2433b60
 
 
 
 
ed4e888
 
5c2eef5
ed4e888
2433b60
 
1c6ae69
5c2eef5
 
2433b60
 
 
5c2eef5
2433b60
 
44dc0ac
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44dc0ac
2433b60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2eef5
 
 
 
2433b60
 
5c2eef5
 
 
a37cfc6
2433b60
5c2eef5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c6ae69
5c2eef5
 
 
 
1c6ae69
5c2eef5
 
 
 
 
 
 
 
2433b60
 
 
9bb818e
 
5c2eef5
9bb818e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c2eef5
ed4e888
5c2eef5
44dc0ac
 
5c2eef5
aacfe72
5c2eef5
a37cfc6
 
5c2eef5
a37cfc6
 
 
 
5c2eef5
 
a37cfc6
 
 
 
 
 
 
9bb818e
5c2eef5
 
9bb818e
5c2eef5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
# utils.py

import os
import re
import json
import requests
import tempfile
from bs4 import BeautifulSoup
from typing import List, Literal
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import yt_dlp
import tiktoken
from groq import Groq
import numpy as np
import torch
import random
from num2words import num2words  # For robust number-to-words conversion

class DialogueItem(BaseModel):
    speaker: Literal["Jane", "John"]   # TTS voice
    display_speaker: str = "Jane"      # For display in transcript
    text: str

class Dialogue(BaseModel):
    dialogue: List[DialogueItem]

# Initialize Whisper (unused for YouTube with RapidAPI)
asr_pipeline = pipeline(
    "automatic-speech-recognition",
    model="openai/whisper-tiny.en",
    device=0 if torch.cuda.is_available() else -1
)

def truncate_text(text, max_tokens=2048):
    """
    If the text exceeds the max token limit (approx. 2,048), truncate it
    to avoid exceeding the model's context window.
    """
    print("[LOG] Truncating text if needed.")
    tokenizer = tiktoken.get_encoding("cl100k_base")
    tokens = tokenizer.encode(text)
    if len(tokens) > max_tokens:
        print("[LOG] Text too long, truncating.")
        return tokenizer.decode(tokens[:max_tokens])
    return text

def extract_text_from_url(url):
    """
    Fetches and extracts readable text from a given URL
    (stripping out scripts, styles, etc.).
    """
    print("[LOG] Extracting text from URL:", url)
    try:
        headers = {
            "User-Agent": (
                "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
                "AppleWebKit/537.36 (KHTML, like Gecko) "
                "Chrome/115.0.0.0 Safari/537.36"
            )
        }
        response = requests.get(url, headers=headers)
        if response.status_code != 200:
            print(f"[ERROR] Failed to fetch URL: {url} with status code {response.status_code}")
            return ""
        soup = BeautifulSoup(response.text, 'html.parser')
        for script in soup(["script", "style"]):
            script.decompose()
        text = soup.get_text(separator=' ')
        print("[LOG] Text extraction from URL successful.")
        return text
    except Exception as e:
        print(f"[ERROR] Exception during text extraction from URL: {e}")
        return ""

def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
    """
    Shifts the pitch of an AudioSegment by a given number of semitones.
    Positive semitones shift the pitch up, negative shifts it down.
    """
    print(f"[LOG] Shifting pitch by {semitones} semitones.")
    new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
    shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
    return shifted_audio.set_frame_rate(audio.frame_rate)

def is_sufficient(text: str, min_word_count: int = 500) -> bool:
    """
    Checks if the fetched text meets our sufficiency criteria
    (e.g., at least 500 words).
    """
    word_count = len(text.split())
    print(f"[DEBUG] Aggregated word count: {word_count}")
    return word_count >= min_word_count

def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
    """
    Queries the Groq API to retrieve more info from the LLM's knowledge base.
    Appends it to our aggregated info if found.
    """
    print("[LOG] Querying LLM for additional information.")
    system_prompt = (
        "You are an AI assistant with extensive knowledge up to 2023-10. "
        "Provide additional relevant information on the following topic based on your knowledge base.\n\n"
        f"Topic: {topic}\n\n"
        f"Existing Information: {existing_text}\n\n"
        "Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
    )
    groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
    try:
        response = groq_client.chat.completions.create(
            messages=[{"role": "system", "content": system_prompt}],
            model="llama-3.3-70b-versatile",
            max_tokens=1024,
            temperature=0.7
        )
    except Exception as e:
        print("[ERROR] Groq API error during fallback:", e)
        return ""
    additional_info = response.choices[0].message.content.strip()
    print("[DEBUG] Additional information from LLM:")
    print(additional_info)
    return additional_info

def research_topic(topic: str) -> str:
    """
    Gathers info from various RSS feeds and Wikipedia. If needed, queries the LLM
    for more data if the aggregated text is insufficient.
    """
    sources = {
        "BBC": "https://feeds.bbci.co.uk/news/rss.xml",
        "CNN": "http://rss.cnn.com/rss/edition.rss",
        "Associated Press": "https://apnews.com/apf-topnews",
        "NDTV": "https://www.ndtv.com/rss/top-stories",
        "Times of India": "https://timesofindia.indiatimes.com/rssfeeds/296589292.cms",
        "The Hindu": "https://www.thehindu.com/news/national/kerala/rssfeed.xml",
        "Economic Times": "https://economictimes.indiatimes.com/rssfeeds/1977021501.cms",
        "Google News - Custom": f"https://news.google.com/rss/search?q={requests.utils.quote(topic)}&hl=en-IN&gl=IN&ceid=IN:en",
    }

    summary_parts = []

    # Wikipedia summary
    wiki_summary = fetch_wikipedia_summary(topic)
    if wiki_summary:
        summary_parts.append(f"From Wikipedia: {wiki_summary}")

    # For each RSS feed
    for name, feed_url in sources.items():
        try:
            items = fetch_rss_feed(feed_url)
            if not items:
                continue
            title, desc, link = find_relevant_article(items, topic, min_match=2)
            if link:
                article_text = fetch_article_text(link)
                if article_text:
                    summary_parts.append(f"From {name}: {article_text}")
                else:
                    summary_parts.append(f"From {name}: {title} - {desc}")
        except Exception as e:
            print(f"[ERROR] Error fetching from {name} RSS feed:", e)
            continue

    aggregated_info = " ".join(summary_parts)
    print("[DEBUG] Aggregated info from primary sources:")
    print(aggregated_info)

    # If not enough data, fallback to LLM
    if not is_sufficient(aggregated_info):
        print("[LOG] Insufficient info from primary sources. Fallback to LLM.")
        additional_info = query_llm_for_additional_info(topic, aggregated_info)
        if additional_info:
            aggregated_info += " " + additional_info
        else:
            print("[ERROR] Failed to retrieve additional info from LLM.")

    if not aggregated_info:
        return f"Sorry, I couldn't find recent information on '{topic}'."

    return aggregated_info

def fetch_wikipedia_summary(topic: str) -> str:
    """
    Fetch a quick Wikipedia summary of the topic via the official Wikipedia API.
    """
    print("[LOG] Fetching Wikipedia summary for:", topic)
    try:
        search_url = (
            f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}"
            "&limit=1&namespace=0&format=json"
        )
        resp = requests.get(search_url)
        if resp.status_code != 200:
            print(f"[ERROR] Failed to fetch Wikipedia search results for {topic}")
            return ""
        data = resp.json()
        if len(data) > 1 and data[1]:
            title = data[1][0]
            summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
            s_resp = requests.get(summary_url)
            if s_resp.status_code == 200:
                s_data = s_resp.json()
                if "extract" in s_data:
                    print("[LOG] Wikipedia summary fetched successfully.")
                    return s_data["extract"]
        return ""
    except Exception as e:
        print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
        return ""

def fetch_rss_feed(feed_url: str) -> list:
    """
    Pulls RSS feed data from a given URL and returns items.
    """
    print("[LOG] Fetching RSS feed:", feed_url)
    try:
        resp = requests.get(feed_url)
        if resp.status_code != 200:
            print(f"[ERROR] Failed to fetch RSS feed: {feed_url}")
            return []
        soup = BeautifulSoup(resp.content, "xml")
        items = soup.find_all("item")
        return items
    except Exception as e:
        print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}")
        return []

def find_relevant_article(items, topic: str, min_match=2) -> tuple:
    """
    Check each article in the RSS feed for mention of the topic
    by counting the number of keyword matches.
    """
    print("[LOG] Finding relevant articles...")
    keywords = re.findall(r'\w+', topic.lower())
    for item in items:
        title = item.find("title").get_text().strip() if item.find("title") else ""
        description = item.find("description").get_text().strip() if item.find("description") else ""
        text = (title + " " + description).lower()
        matches = sum(1 for kw in keywords if kw in text)
        if matches >= min_match:
            link = item.find("link").get_text().strip() if item.find("link") else ""
            print(f"[LOG] Relevant article found: {title}")
            return title, description, link
    return None, None, None

def fetch_article_text(link: str) -> str:
    """
    Fetch the article text from the given link (first 5 paragraphs).
    """
    print("[LOG] Fetching article text from:", link)
    if not link:
        print("[LOG] No link provided for article text.")
        return ""
    try:
        resp = requests.get(link)
        if resp.status_code != 200:
            print(f"[ERROR] Failed to fetch article from {link}")
            return ""
        soup = BeautifulSoup(resp.text, 'html.parser')
        paragraphs = soup.find_all("p")
        text = " ".join(p.get_text() for p in paragraphs[:5])  # first 5 paragraphs
        print("[LOG] Article text fetched successfully.")
        return text.strip()
    except Exception as e:
        print(f"[ERROR] Error fetching article text: {e}")
        return ""

# Updated generate_script signature to accept extra arguments without using them
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str, 
                    host_name: str = "Jane", guest_name: str = "John", 
                    sponsor_style: str = "Separate Break", sponsor_provided: bool = False):
    print("[LOG] Generating script with tone:", tone, "and length:", target_length)
    groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))

    # Map length string to word ranges
    length_mapping = {
        "1-3 Mins": (200, 450),
        "3-5 Mins": (450, 750),
        "5-10 Mins": (750, 1500),
        "10-20 Mins": (1500, 3000)
    }
    min_words, max_words = length_mapping.get(target_length, (200, 450))

    tone_description = {
        "Humorous": "funny and exciting, makes people chuckle",
        "Formal": "business-like, well-structured, professional",
        "Casual": "like a conversation between close friends, relaxed and informal",
        "Youthful": "like how teenagers might chat, energetic and lively"
    }
    chosen_tone = tone_description.get(tone, "casual")

    # Construct prompt
    prompt = (
        f"{system_prompt}\n"
        f"TONE: {chosen_tone}\n"
        f"TARGET LENGTH: {target_length} ({min_words}-{max_words} words)\n"
        f"INPUT TEXT: {input_text}\n\n"
        "Please provide the output in the following JSON format without any additional text:\n\n"
        "{\n"
        '    "dialogue": [\n'
        '        {\n'
        '            "speaker": "Jane",\n'
        '            "text": "..." \n'
        '        },\n'
        '        {\n'
        '            "speaker": "John",\n'
        '            "text": "..." \n'
        '        }\n'
        "    ]\n"
        "}"
    )
    print("[LOG] Sending prompt to Groq:")
    print(prompt)

    try:
        response = groq_client.chat.completions.create(
            messages=[{"role": "system", "content": prompt}],
            model="llama-3.3-70b-versatile",
            max_tokens=2048,
            temperature=0.7
        )
    except Exception as e:
        print("[ERROR] Groq API error:", e)
        raise ValueError(f"Error communicating with Groq API: {str(e)}")

    raw_content = response.choices[0].message.content.strip()
    # Attempt to parse JSON
    start_index = raw_content.find('{')
    end_index = raw_content.rfind('}')
    if start_index == -1 or end_index == -1:
        raise ValueError("Failed to parse dialogue: No JSON found.")

    json_str = raw_content[start_index:end_index+1].strip()
    try:
        data = json.loads(json_str)
        return Dialogue(**data)
    except Exception as e:
        print("[ERROR] JSON decoding failed:", e)
        raise ValueError(f"Failed to parse dialogue: {str(e)}")

# ----------------------------------------------------------------------
# REPLACE the YTDLP-based approach with the RapidAPI approach
# ----------------------------------------------------------------------
def transcribe_youtube_video(video_url: str) -> str:
    """
    Transcribe the given YouTube video by calling the RapidAPI 'youtube-transcriptor' endpoint.
    1) Extract the 11-char video ID from the YouTube URL.
    2) Call the RapidAPI endpoint (lang=en).
    3) Parse and extract 'transcriptionAsText' from the response.
    4) Return that transcript as a string.
    """
    print("[LOG] Transcribing YouTube video via RapidAPI:", video_url)
    # Extract video ID
    video_id_match = re.search(r"(?:v=|\/)([0-9A-Za-z_-]{11})", video_url)
    if not video_id_match:
        raise ValueError(f"Invalid YouTube URL: {video_url}, cannot extract video ID.")

    video_id = video_id_match.group(1)
    print("[LOG] Extracted video ID:", video_id)

    base_url = "https://youtube-transcriptor.p.rapidapi.com/transcript"
    params = {
        "video_id": video_id,
        "lang": "en"
    }
    headers = {
        "x-rapidapi-host": "youtube-transcriptor.p.rapidapi.com",
        "x-rapidapi-key": os.environ.get("RAPIDAPI_KEY")
    }

    try:
        response = requests.get(base_url, headers=headers, params=params, timeout=30)
        print("[LOG] RapidAPI Response Status Code:", response.status_code)
        print("[LOG] RapidAPI Response Body:", response.text)  # Log the full response

        if response.status_code != 200:
            raise ValueError(f"RapidAPI transcription error: {response.status_code}, {response.text}")

        data = response.json()
        if not isinstance(data, list) or not data:
            raise ValueError(f"Unexpected transcript format or empty transcript: {data}")

        # Extract 'transcriptionAsText'
        transcript_as_text = data[0].get('transcriptionAsText', '').strip()
        if not transcript_as_text:
            raise ValueError("transcriptionAsText field is missing or empty.")

        print("[LOG] Transcript retrieval successful.")
        print(f"[DEBUG] Transcript Length: {len(transcript_as_text)} characters.")

        # Optionally, print a snippet of the transcript
        if len(transcript_as_text) > 200:
            snippet = transcript_as_text[:200] + "..."
        else:
            snippet = transcript_as_text
        print(f"[DEBUG] Transcript Snippet: {snippet}")

        return transcript_as_text

    except Exception as e:
        print("[ERROR] RapidAPI transcription error:", e)
        raise ValueError(f"Error transcribing YouTube video via RapidAPI: {str(e)}")

def generate_audio_mp3(text: str, speaker: str) -> str:
    """
    Calls Deepgram TTS with the text, returning a path to a temp MP3 file.
    We also do some pre-processing for punctuation, abbreviations, etc.
    """
    try:
        print(f"[LOG] Generating audio for speaker: {speaker}")

        # Preprocess text with speaker context
        processed_text = _preprocess_text_for_tts(text, speaker)

        deepgram_api_url = "https://api.deepgram.com/v1/speak"
        params = {
            "model": "aura-asteria-en",  # default
        }
        if speaker == "John":
            params["model"] = "aura-zeus-en"

        headers = {
            "Accept": "audio/mpeg",
            "Content-Type": "application/json",
            "Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
        }
        body = {
            "text": processed_text
        }

        response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
        if response.status_code != 200:
            raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")

        content_type = response.headers.get('Content-Type', '')
        if 'audio/mpeg' not in content_type:
            raise ValueError("Unexpected Content-Type from Deepgram.")

        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    mp3_file.write(chunk)
            mp3_path = mp3_file.name

        # Normalize volume
        audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
        audio_seg = effects.normalize(audio_seg)

        final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
        audio_seg.export(final_mp3_path, format="mp3")

        if os.path.exists(mp3_path):
            os.remove(mp3_path)

        return final_mp3_path
    except Exception as e:
        print("[ERROR] Error generating audio:", e)
        raise ValueError(f"Error generating audio: {str(e)}")

def transcribe_youtube_video_OLD_YTDLP(video_url: str) -> str:
    """
    Original ytdlp-based approach for local transcription. 
    No longer used, but kept for reference.
    """
    pass

# ---------------------------------------------------------------------
# TEXT PRE-PROCESSING FOR NATURAL TTS (punctuation, abbreviations, etc.)
# ---------------------------------------------------------------------
def _preprocess_text_for_tts(text: str, speaker: str) -> str:
    """
    Enhances text for natural-sounding TTS by handling abbreviations,
    punctuation, and intelligent filler insertion.
    Adjustments are made based on the speaker to optimize output quality.
    """
    # 1) Hyphens -> spaces
    text = re.sub(r"-", " ", text)

    # 2) Convert decimals (e.g., 3.14 -> 'three point one four')
    def convert_decimal(m):
        number_str = m.group()
        parts = number_str.split('.')
        whole_part = _spell_digits(parts[0])
        decimal_part = " ".join(_spell_digits(d) for d in parts[1])
        return f"{whole_part} point {decimal_part}"

    text = re.sub(r"\d+\.\d+", convert_decimal, text)

    # 3) Abbreviations (e.g., NASA -> N A S A, MPs -> M Peas)
    def expand_abbreviations(match):
        abbrev = match.group()
        # Check if it's a plural abbreviation
        if abbrev.endswith('s') and abbrev[:-1].isupper():
            singular = abbrev[:-1]
            expanded = " ".join(list(singular)) + "s"  # Append 's' to the expanded form
            # Handle specific plural forms
            specific_plural = {
                "MPs": "M Peas",
                "TMTs": "T M Tees",
                "ARJs": "A R Jays",
                # Add more as needed
            }
            return specific_plural.get(abbrev, expanded)
        else:
            return " ".join(list(abbrev))

    # Regex to match abbreviations (all uppercase letters, possibly ending with 's')
    text = re.sub(r"\b[A-Z]{2,}s?\b", expand_abbreviations, text)

    # 4) Removed ellipsis insertion after punctuation to reduce long pauses
    # These lines have been removed:
    # text = re.sub(r"\.(\s|$)", r"...\1", text)
    # text = re.sub(r",(\s|$)", r",...\1", text)
    # text = re.sub(r"\?(\s|$)", r"?...\1", text)

    # 5) Intelligent filler insertion after specific keywords (skip for Jane)
    if speaker != "Jane":
        def insert_thinking_pause(m):
            word = m.group(1)
            # Decide randomly whether to insert a filler
            if random.random() < 0.3:  # 30% chance
                filler = random.choice(['hmm,', 'well,', 'let me see,'])
                return f"{word}..., {filler}"
            else:
                return f"{word}...,"

        keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
        text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)

    # 6) Insert dynamic pauses within sentences (e.g., after conjunctions) for non-Jane speakers
    if speaker != "Jane":
        conjunctions_pattern = r"\b(and|but|so|because|however)\b"
        text = re.sub(conjunctions_pattern, lambda m: f"{m.group()}...", text, flags=re.IGNORECASE)

    # 7) Remove any unintended random fillers (safeguard)
    text = re.sub(r"\b(uh|um|ah)\b", "", text, flags=re.IGNORECASE)

    # 8) Ensure normal grammar and speaking style
    def capitalize_match(match):
        return match.group().upper()

    text = re.sub(r'(^\s*\w)|([.!?]\s*\w)', capitalize_match, text)

    return text.strip()

def _spell_digits(d: str) -> str:
    """
    Convert digits '3' -> 'three', etc.
    """
    digit_map = {
        '0': 'zero',
        '1': 'one',
        '2': 'two',
        '3': 'three',
        '4': 'four',
        '5': 'five',
        '6': 'six',
        '7': 'seven',
        '8': 'eight',
        '9': 'nine'
    }
    return " ".join(digit_map[ch] for ch in d if ch in digit_map)

def mix_with_bg_music(spoken: AudioSegment) -> AudioSegment:
    """
    Mixes 'spoken' with bg_music.mp3 in the root folder:
    1) Start with 2 seconds of music alone before speech begins.
    2) Loop the music if it's shorter than the final audio length.
    3) Lower the music volume so the speech is clear.
    """
    bg_music_path = "bg_music.mp3"  # in root folder

    try:
        bg_music = AudioSegment.from_file(bg_music_path, format="mp3")
    except Exception as e:
        print("[ERROR] Failed to load background music:", e)
        return spoken

    # Reduce background music volume further
    bg_music = bg_music - 18.0  # Lower volume (e.g. -18 dB)

    total_length_ms = len(spoken) + 2000
    looped_music = AudioSegment.empty()
    while len(looped_music) < total_length_ms:
        looped_music += bg_music

    looped_music = looped_music[:total_length_ms]

    # Overlay spoken at 2000ms so we get 2s of music first
    final_mix = looped_music.overlay(spoken, position=2000)

    return final_mix