Spaces:
Running
Running
File size: 16,831 Bytes
c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 89feeb0 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 424917e c0e2ca4 424917e c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 424917e c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 424917e c0e2ca4 89feeb0 c0e2ca4 424917e c0e2ca4 424917e c0e2ca4 424917e c0e2ca4 424917e 89feeb0 e62d0b2 faddf89 e62d0b2 89feeb0 e62d0b2 faddf89 89feeb0 faddf89 e62d0b2 faddf89 e62d0b2 faddf89 e62d0b2 faddf89 424917e faddf89 424917e faddf89 89feeb0 424917e e62d0b2 424917e e62d0b2 424917e e62d0b2 89feeb0 c0e2ca4 e62d0b2 faddf89 e62d0b2 c0e2ca4 89feeb0 faddf89 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 c0e2ca4 e62d0b2 424917e e62d0b2 424917e c0e2ca4 e62d0b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
# utils.py
import os
import re
import json
import requests
import tempfile
from bs4 import BeautifulSoup
from typing import List, Literal
from pydantic import BaseModel
from pydub import AudioSegment, effects
from transformers import pipeline
import yt_dlp
import tiktoken
from groq import Groq
import numpy as np
import torch
import random
class DialogueItem(BaseModel):
speaker: Literal["Jane", "John"]
text: str
class Dialogue(BaseModel):
dialogue: List[DialogueItem]
# Initialize Whisper ASR pipeline
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-tiny.en", device=0 if torch.cuda.is_available() else -1)
def truncate_text(text, max_tokens=2048):
print("[LOG] Truncating text if needed.")
tokenizer = tiktoken.get_encoding("cl100k_base")
tokens = tokenizer.encode(text)
if len(tokens) > max_tokens:
print("[LOG] Text too long, truncating.")
return tokenizer.decode(tokens[:max_tokens])
return text
def extract_text_from_url(url):
print("[LOG] Extracting text from URL:", url)
try:
response = requests.get(url)
if response.status_code != 200:
print(f"[ERROR] Failed to fetch URL: {url} with status code {response.status_code}")
return ""
soup = BeautifulSoup(response.text, 'html.parser')
for script in soup(["script", "style"]):
script.decompose()
text = soup.get_text(separator=' ')
print("[LOG] Text extraction from URL successful.")
return text
except Exception as e:
print(f"[ERROR] Exception during text extraction from URL: {e}")
return ""
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
"""
Shifts the pitch of an AudioSegment by a given number of semitones.
Positive semitones shift the pitch up, negative shifts it down.
"""
print(f"[LOG] Shifting pitch by {semitones} semitones.")
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
shifted_audio = audio._spawn(audio.raw_data, overrides={'frame_rate': new_sample_rate})
return shifted_audio.set_frame_rate(audio.frame_rate)
def is_sufficient(text: str, min_word_count: int = 500) -> bool:
"""
Determines if the fetched information meets the sufficiency criteria.
"""
word_count = len(text.split())
print(f"[DEBUG] Aggregated word count: {word_count}")
return word_count >= min_word_count
def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
"""
Queries the Groq API to retrieve additional relevant information from the LLM's knowledge base.
"""
print("[LOG] Querying LLM for additional information.")
system_prompt = (
"You are an AI assistant with extensive knowledge up to 2023-10. "
"Provide additional relevant information on the following topic based on your knowledge base.\n\n"
f"Topic: {topic}\n\n"
f"Existing Information: {existing_text}\n\n"
"Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
)
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
try:
response = groq_client.chat.completions.create(
messages=[{"role": "system", "content": system_prompt}],
model="llama-3.3-70b-versatile",
max_tokens=1024,
temperature=0.7
)
except Exception as e:
print("[ERROR] Groq API error during fallback:", e)
return ""
additional_info = response.choices[0].message.content.strip()
print("[DEBUG] Additional information from LLM:")
print(additional_info)
return additional_info
def research_topic(topic: str) -> str:
# News sources
sources = {
"BBC": "https://feeds.bbci.co.uk/news/rss.xml",
"CNN": "http://rss.cnn.com/rss/edition.rss",
"Associated Press": "https://apnews.com/apf-topnews",
"NDTV": "https://www.ndtv.com/rss/top-stories",
"Times of India": "https://timesofindia.indiatimes.com/rssfeeds/296589292.cms",
"The Hindu": "https://www.thehindu.com/news/national/kerala/rssfeed.xml",
"Economic Times": "https://economictimes.indiatimes.com/rssfeeds/1977021501.cms",
"Google News - Custom": f"https://news.google.com/rss/search?q={requests.utils.quote(topic)}&hl=en-IN&gl=IN&ceid=IN:en",
}
summary_parts = []
# Wikipedia summary
wiki_summary = fetch_wikipedia_summary(topic)
if wiki_summary:
summary_parts.append(f"From Wikipedia: {wiki_summary}")
for name, url in sources.items():
try:
items = fetch_rss_feed(url)
if not items:
continue
title, desc, link = find_relevant_article(items, topic, min_match=2)
if link:
article_text = fetch_article_text(link)
if article_text:
summary_parts.append(f"From {name}: {article_text}")
else:
summary_parts.append(f"From {name}: {title} - {desc}")
except Exception as e:
print(f"[ERROR] Error fetching from {name} RSS feed:", e)
continue
aggregated_info = " ".join(summary_parts)
print("[DEBUG] Aggregated info from primary sources:")
print(aggregated_info)
if not is_sufficient(aggregated_info):
print("[LOG] Insufficient info from primary sources. Fallback to LLM.")
additional_info = query_llm_for_additional_info(topic, aggregated_info)
if additional_info:
aggregated_info += " " + additional_info
else:
print("[ERROR] Failed to retrieve additional info from LLM.")
if not aggregated_info:
return f"Sorry, I couldn't find recent information on '{topic}'."
return aggregated_info
def fetch_wikipedia_summary(topic: str) -> str:
print("[LOG] Fetching Wikipedia summary for:", topic)
try:
search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
resp = requests.get(search_url)
if resp.status_code != 200:
print(f"[ERROR] Failed to fetch Wikipedia search results for topic: {topic}")
return ""
data = resp.json()
if len(data) > 1 and data[1]:
title = data[1][0]
summary_url = f"https://en.wikipedia.org/api/rest_v1/page/summary/{requests.utils.quote(title)}"
s_resp = requests.get(summary_url)
if s_resp.status_code == 200:
s_data = s_resp.json()
if "extract" in s_data:
print("[LOG] Wikipedia summary fetched successfully.")
return s_data["extract"]
return ""
except Exception as e:
print(f"[ERROR] Exception during Wikipedia summary fetch: {e}")
return ""
def fetch_rss_feed(feed_url: str) -> list:
print("[LOG] Fetching RSS feed:", feed_url)
try:
resp = requests.get(feed_url)
if resp.status_code != 200:
print(f"[ERROR] Failed to fetch RSS feed: {feed_url}")
return []
soup = BeautifulSoup(resp.content, "html.parser")
items = soup.find_all("item")
return items
except Exception as e:
print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}")
return []
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
"""
Searches for relevant articles based on topic keywords.
"""
print("[LOG] Finding relevant articles...")
keywords = re.findall(r'\w+', topic.lower())
for item in items:
title = item.find("title").get_text().strip() if item.find("title") else ""
description = item.find("description").get_text().strip() if item.find("description") else ""
text = f"{title.lower()} {description.lower()}"
matches = sum(1 for kw in keywords if kw in text)
if matches >= min_match:
link = item.find("link").get_text().strip() if item.find("link") else ""
print(f"[LOG] Relevant article found: {title}")
return title, description, link
return None, None, None
def fetch_article_text(link: str) -> str:
print("[LOG] Fetching article text from:", link)
if not link:
return ""
try:
resp = requests.get(link)
if resp.status_code != 200:
print(f"[ERROR] Failed to fetch article with status {resp.status_code}")
return ""
soup = BeautifulSoup(resp.text, 'html.parser')
paragraphs = soup.find_all("p")
text = " ".join(p.get_text() for p in paragraphs[:5])
return text.strip()
except Exception as e:
print(f"[ERROR] Error fetching article text: {e}")
return ""
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str):
print("[LOG] Generating script with tone:", tone, "and length:", target_length)
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
length_mapping = {
"1-3 Mins": (200, 450),
"3-5 Mins": (450, 750),
"5-10 Mins": (750, 1500),
"10-20 Mins": (1500, 3000)
}
min_words, max_words = length_mapping.get(target_length, (200, 450))
tone_description = {
"Humorous": "funny and exciting, makes people chuckle",
"Formal": "business-like, well-structured, professional",
"Casual": "like a conversation between close friends, relaxed and informal",
"Youthful": "like how teenagers might chat, energetic and lively"
}
chosen_tone = tone_description.get(tone, "casual")
prompt = (
f"{system_prompt}\n"
f"TONE: {chosen_tone}\n"
f"TARGET LENGTH: {target_length} ({min_words}-{max_words} words)\n"
f"INPUT TEXT: {input_text}\n\n"
"Please provide the output in the following JSON format without any additional text:\n\n"
"{\n"
' "dialogue": [\n'
' {\n'
' "speaker": "Jane",\n'
' "text": "..." \n'
' },\n'
' {\n'
' "speaker": "John",\n'
' "text": "..." \n'
' }\n'
" ]\n"
"}"
)
try:
response = groq_client.chat.completions.create(
messages=[{"role": "system", "content": prompt}],
model="llama-3.3-70b-versatile",
max_tokens=2048,
temperature=0.7
)
except Exception as e:
raise ValueError(f"Error communicating with Groq API: {str(e)}")
raw_content = response.choices[0].message.content.strip()
start_index = raw_content.find('{')
end_index = raw_content.rfind('}')
if start_index == -1 or end_index == -1:
raise ValueError("Failed to parse dialogue: No JSON found.")
json_str = raw_content[start_index:end_index+1].strip()
data = json.loads(json_str)
return Dialogue(**data)
# --------------------------------------------------------------
# TTS Preprocessing to handle decimals, hyphens, short thinking pauses, etc.
# --------------------------------------------------------------
def _preprocess_text_for_tts(text: str) -> str:
"""
1) Convert decimals to spelled-out words ("3.14" -> "three point one four").
2) Replace hyphens with spaces (so TTS doesn't say 'dash').
3) Insert filler words or '...' for natural-sounding pauses at significant points.
"""
# 1) Convert decimals
def convert_decimal(m):
number_str = m.group() # e.g. "3.14"
parts = number_str.split('.')
whole_part = _spell_digits(parts[0]) # "three"
decimal_part = " ".join(_spell_digits(d) for d in parts[1])
return f"{whole_part} point {decimal_part}"
text = re.sub(r"\d+\.\d+", convert_decimal, text)
# 2) Replace hyphens with spaces
# e.g. "mother-in-law" -> "mother in law"
text = re.sub(r"-", " ", text)
# 3) Insert natural-sounding short pauses:
# a) After exclamation points or question marks, add "..." with small chance
# b) Random small "thinking" filler for major statements
# Step 3a: Exclamations / questions
text = re.sub(r"(!+)", r"\1...", text) # e.g. "Wow!" -> "Wow!..."
text = re.sub(r"(\?+)", r"\1...", text) # e.g. "Really?" -> "Really?..."
# Step 3b: Insert small breaks for "thinking"
# We'll define some keywords that might indicate a "significant point."
# e.g. "important", "significant", "crucial", "point", "topic"
# Then we insert '..., hmm,' or '..., well,' afterwards with a small chance.
def insert_thinking_pause(m):
word = m.group(1)
if random.random() < 0.5:
return f"{word}..., hmm,"
else:
return f"{word}..., well,"
keywords_pattern = r"\b(important|significant|crucial|point|topic)\b"
text = re.sub(keywords_pattern, insert_thinking_pause, text, flags=re.IGNORECASE)
return text.strip()
def _spell_digits(d: str) -> str:
"""
Convert each digit '3' -> 'three', '5' -> 'five', etc.
"""
digit_map = {
'0': 'zero', '1': 'one', '2': 'two', '3': 'three',
'4': 'four','5': 'five','6': 'six','7': 'seven',
'8': 'eight','9': 'nine'
}
return " ".join(digit_map[ch] for ch in d if ch in digit_map)
def generate_audio_mp3(text: str, speaker: str) -> str:
"""
Main TTS function, calls Deepgram with preprocessed text.
Returns path to a temporary MP3 file.
"""
try:
print(f"[LOG] Generating audio for speaker: {speaker}")
# Preprocess text (decimal/hyphen/pause insertion)
processed_text = _preprocess_text_for_tts(text)
# Define Deepgram API endpoint
deepgram_api_url = "https://api.deepgram.com/v1/speak"
params = {
"model": "aura-asteria-en", # default female
}
if speaker == "John":
params["model"] = "aura-perseus-en"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
}
body = {
"text": processed_text
}
print("[LOG] Sending TTS request to Deepgram...")
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
if response.status_code != 200:
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
content_type = response.headers.get('Content-Type', '')
if 'audio/mpeg' not in content_type:
raise ValueError("Unexpected Content-Type from Deepgram.")
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
mp3_file.write(chunk)
mp3_path = mp3_file.name
# Normalize volume
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
audio_seg = effects.normalize(audio_seg)
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
audio_seg.export(final_mp3_path, format="mp3")
if os.path.exists(mp3_path):
os.remove(mp3_path)
return final_mp3_path
except Exception as e:
print("[ERROR] Error generating audio:", e)
raise ValueError(f"Error generating audio: {str(e)}")
def transcribe_youtube_video(video_url: str) -> str:
"""
Downloads and transcribes the audio from a YouTube video using Whisper (pipeline).
"""
print("[LOG] Transcribing YouTube video:", video_url)
fd, audio_file = tempfile.mkstemp(suffix=".wav")
os.close(fd)
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': audio_file,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'wav',
'preferredquality': '192'
}],
'quiet': True,
'no_warnings': True,
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([video_url])
except yt_dlp.utils.DownloadError as e:
raise ValueError(f"Error downloading YouTube video: {str(e)}")
print("[LOG] Audio downloaded at:", audio_file)
try:
result = asr_pipeline(audio_file)
transcript = result["text"]
print("[LOG] Transcription completed.")
return transcript.strip()
except Exception as e:
raise ValueError(f"Error transcribing YouTube video: {str(e)}")
finally:
if os.path.exists(audio_file):
os.remove(audio_file)
print(f"[LOG] Removed temporary audio file: {audio_file}")
|