Spaces:
Running
Running
Update utils.py
Browse files
utils.py
CHANGED
@@ -12,9 +12,9 @@ from pydub import AudioSegment, effects
|
|
12 |
from transformers import pipeline
|
13 |
import yt_dlp
|
14 |
import tiktoken
|
15 |
-
from groq import Groq
|
16 |
import numpy as np
|
17 |
-
import torch
|
18 |
import random
|
19 |
|
20 |
class DialogueItem(BaseModel):
|
@@ -56,7 +56,7 @@ def extract_text_from_url(url):
|
|
56 |
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
|
57 |
"""
|
58 |
Shifts the pitch of an AudioSegment by a given number of semitones.
|
59 |
-
Positive semitones shift the pitch up, negative
|
60 |
"""
|
61 |
print(f"[LOG] Shifting pitch by {semitones} semitones.")
|
62 |
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
|
@@ -83,7 +83,6 @@ def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
|
83 |
f"Existing Information: {existing_text}\n\n"
|
84 |
"Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
|
85 |
)
|
86 |
-
|
87 |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
88 |
try:
|
89 |
response = groq_client.chat.completions.create(
|
@@ -95,14 +94,13 @@ def query_llm_for_additional_info(topic: str, existing_text: str) -> str:
|
|
95 |
except Exception as e:
|
96 |
print("[ERROR] Groq API error during fallback:", e)
|
97 |
return ""
|
98 |
-
|
99 |
additional_info = response.choices[0].message.content.strip()
|
100 |
print("[DEBUG] Additional information from LLM:")
|
101 |
print(additional_info)
|
102 |
return additional_info
|
103 |
|
104 |
def research_topic(topic: str) -> str:
|
105 |
-
#
|
106 |
sources = {
|
107 |
"BBC": "https://feeds.bbci.co.uk/news/rss.xml",
|
108 |
"CNN": "http://rss.cnn.com/rss/edition.rss",
|
@@ -116,6 +114,7 @@ def research_topic(topic: str) -> str:
|
|
116 |
|
117 |
summary_parts = []
|
118 |
|
|
|
119 |
wiki_summary = fetch_wikipedia_summary(topic)
|
120 |
if wiki_summary:
|
121 |
summary_parts.append(f"From Wikipedia: {wiki_summary}")
|
@@ -137,7 +136,7 @@ def research_topic(topic: str) -> str:
|
|
137 |
continue
|
138 |
|
139 |
aggregated_info = " ".join(summary_parts)
|
140 |
-
print("[DEBUG] Aggregated
|
141 |
print(aggregated_info)
|
142 |
|
143 |
if not is_sufficient(aggregated_info):
|
@@ -159,7 +158,7 @@ def fetch_wikipedia_summary(topic: str) -> str:
|
|
159 |
search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
|
160 |
resp = requests.get(search_url)
|
161 |
if resp.status_code != 200:
|
162 |
-
print(f"[ERROR] Failed to fetch Wikipedia search for topic: {topic}")
|
163 |
return ""
|
164 |
data = resp.json()
|
165 |
if len(data) > 1 and data[1]:
|
@@ -169,7 +168,7 @@ def fetch_wikipedia_summary(topic: str) -> str:
|
|
169 |
if s_resp.status_code == 200:
|
170 |
s_data = s_resp.json()
|
171 |
if "extract" in s_data:
|
172 |
-
print("[LOG] Wikipedia summary fetched.")
|
173 |
return s_data["extract"]
|
174 |
return ""
|
175 |
except Exception as e:
|
@@ -181,17 +180,19 @@ def fetch_rss_feed(feed_url: str) -> list:
|
|
181 |
try:
|
182 |
resp = requests.get(feed_url)
|
183 |
if resp.status_code != 200:
|
184 |
-
print(f"[ERROR] Failed to fetch RSS feed {feed_url}")
|
185 |
return []
|
186 |
soup = BeautifulSoup(resp.content, "html.parser")
|
187 |
items = soup.find_all("item")
|
188 |
-
print(f"[LOG] Number of items: {len(items)} from {feed_url}")
|
189 |
return items
|
190 |
except Exception as e:
|
191 |
print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}")
|
192 |
return []
|
193 |
|
194 |
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
|
|
|
|
|
|
195 |
print("[LOG] Finding relevant articles...")
|
196 |
keywords = re.findall(r'\w+', topic.lower())
|
197 |
for item in items:
|
@@ -201,12 +202,12 @@ def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
|
201 |
matches = sum(1 for kw in keywords if kw in text)
|
202 |
if matches >= min_match:
|
203 |
link = item.find("link").get_text().strip() if item.find("link") else ""
|
204 |
-
print(f"[LOG] Relevant article: {title}")
|
205 |
return title, description, link
|
206 |
return None, None, None
|
207 |
|
208 |
def fetch_article_text(link: str) -> str:
|
209 |
-
print("[LOG] Fetching article text:", link)
|
210 |
if not link:
|
211 |
return ""
|
212 |
try:
|
@@ -262,9 +263,6 @@ def generate_script(system_prompt: str, input_text: str, tone: str, target_lengt
|
|
262 |
"}"
|
263 |
)
|
264 |
|
265 |
-
print("[LOG] Sending prompt to Groq:")
|
266 |
-
print(prompt)
|
267 |
-
|
268 |
try:
|
269 |
response = groq_client.chat.completions.create(
|
270 |
messages=[{"role": "system", "content": prompt}],
|
@@ -285,152 +283,120 @@ def generate_script(system_prompt: str, input_text: str, tone: str, target_lengt
|
|
285 |
data = json.loads(json_str)
|
286 |
return Dialogue(**data)
|
287 |
|
288 |
-
#
|
289 |
-
#
|
290 |
-
#
|
291 |
-
|
292 |
-
def _make_text_sound_more_human(text: str) -> str:
|
293 |
"""
|
294 |
-
|
295 |
-
|
|
|
296 |
"""
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
301 |
if random.random() < 0.5:
|
302 |
-
|
303 |
else:
|
304 |
-
|
305 |
-
|
306 |
-
text = " ".join(words[:mid] + [f"{filler},"] + words[mid:])
|
307 |
-
|
308 |
-
# Possibly turn periods into "..." to force a pause
|
309 |
-
text = re.sub(r'\.(\s|$)', lambda m: "..." + m.group(1), text)
|
310 |
-
|
311 |
-
# Possibly turn "?" into "?!" or "!!" for exclamation
|
312 |
-
if random.random() < 0.2:
|
313 |
-
text = text.replace("?", "?!")
|
314 |
-
if random.random() < 0.2:
|
315 |
-
text = text.replace("!", "!!")
|
316 |
|
317 |
return text.strip()
|
318 |
|
319 |
-
def
|
320 |
"""
|
321 |
-
|
322 |
-
individually for better pacing. We'll look for ., !, or ?
|
323 |
-
as sentence boundaries. Also splits by commas for short phrases.
|
324 |
"""
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
# Rebuild into "sentence + punctuation" pairs
|
332 |
-
phrases = []
|
333 |
-
for i in range(0, len(boundaries), 2):
|
334 |
-
if i + 1 < len(boundaries):
|
335 |
-
chunk = (boundaries[i] + boundaries[i+1]).strip()
|
336 |
-
else:
|
337 |
-
chunk = boundaries[i].strip()
|
338 |
-
if chunk:
|
339 |
-
# Now optionally split chunk by commas if it's too big
|
340 |
-
subparts = chunk.split(',')
|
341 |
-
# If there's more than 1 subpart, rejoin them carefully so each subpart can be TTS-ed on its own
|
342 |
-
for idx, sp in enumerate(subparts):
|
343 |
-
part = sp.strip()
|
344 |
-
if part:
|
345 |
-
# Re-add comma except on the last one
|
346 |
-
if idx < len(subparts) - 1:
|
347 |
-
part += ","
|
348 |
-
phrases.append(part)
|
349 |
-
return phrases
|
350 |
|
351 |
def generate_audio_mp3(text: str, speaker: str) -> str:
|
|
|
|
|
|
|
352 |
try:
|
353 |
print(f"[LOG] Generating audio for speaker: {speaker}")
|
354 |
|
355 |
-
#
|
356 |
-
|
357 |
-
|
358 |
-
#
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
363 |
|
364 |
-
|
365 |
-
|
|
|
366 |
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
|
377 |
-
|
378 |
-
|
379 |
|
380 |
-
|
381 |
-
|
382 |
-
short_silence = AudioSegment.silent(duration=300) # 300ms silence
|
383 |
-
for seg in all_segments[1:]:
|
384 |
-
final_audio = final_audio + short_silence + seg
|
385 |
|
386 |
-
# Step 4: Save combined
|
387 |
-
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
388 |
-
final_audio.export(final_mp3_path, format="mp3")
|
389 |
-
print("[LOG] Combined audio saved at:", final_mp3_path)
|
390 |
return final_mp3_path
|
391 |
-
|
392 |
except Exception as e:
|
393 |
print("[ERROR] Error generating audio:", e)
|
394 |
raise ValueError(f"Error generating audio: {str(e)}")
|
395 |
|
396 |
-
def
|
397 |
"""
|
398 |
-
|
399 |
-
(so we can call multiple times).
|
400 |
"""
|
401 |
-
deepgram_api_url = "https://api.deepgram.com/v1/speak"
|
402 |
-
params = {
|
403 |
-
"model": "aura-asteria-en", # default female
|
404 |
-
}
|
405 |
-
if speaker == "John":
|
406 |
-
params["model"] = "aura-perseus-en"
|
407 |
-
|
408 |
-
headers = {
|
409 |
-
"Accept": "audio/mpeg",
|
410 |
-
"Content-Type": "application/json",
|
411 |
-
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
|
412 |
-
}
|
413 |
-
body = {
|
414 |
-
"text": text
|
415 |
-
}
|
416 |
-
|
417 |
-
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
418 |
-
if response.status_code != 200:
|
419 |
-
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
|
420 |
-
|
421 |
-
content_type = response.headers.get('Content-Type', '')
|
422 |
-
if 'audio/mpeg' not in content_type:
|
423 |
-
raise ValueError("Unexpected Content-Type from Deepgram.")
|
424 |
-
|
425 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
|
426 |
-
for chunk in response.iter_content(chunk_size=8192):
|
427 |
-
if chunk:
|
428 |
-
mp3_file.write(chunk)
|
429 |
-
mp3_path = mp3_file.name
|
430 |
-
|
431 |
-
return mp3_path
|
432 |
-
|
433 |
-
def transcribe_youtube_video(video_url: str) -> str:
|
434 |
print("[LOG] Transcribing YouTube video:", video_url)
|
435 |
fd, audio_file = tempfile.mkstemp(suffix=".wav")
|
436 |
os.close(fd)
|
@@ -464,4 +430,4 @@ def transcribe_youtube_video(video_url: str) -> str:
|
|
464 |
finally:
|
465 |
if os.path.exists(audio_file):
|
466 |
os.remove(audio_file)
|
467 |
-
print(f"[LOG] Removed
|
|
|
12 |
from transformers import pipeline
|
13 |
import yt_dlp
|
14 |
import tiktoken
|
15 |
+
from groq import Groq
|
16 |
import numpy as np
|
17 |
+
import torch
|
18 |
import random
|
19 |
|
20 |
class DialogueItem(BaseModel):
|
|
|
56 |
def pitch_shift(audio: AudioSegment, semitones: int) -> AudioSegment:
|
57 |
"""
|
58 |
Shifts the pitch of an AudioSegment by a given number of semitones.
|
59 |
+
Positive semitones shift the pitch up, negative shifts it down.
|
60 |
"""
|
61 |
print(f"[LOG] Shifting pitch by {semitones} semitones.")
|
62 |
new_sample_rate = int(audio.frame_rate * (2.0 ** (semitones / 12.0)))
|
|
|
83 |
f"Existing Information: {existing_text}\n\n"
|
84 |
"Please add more insightful details, facts, and perspectives to enhance the understanding of the topic."
|
85 |
)
|
|
|
86 |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
87 |
try:
|
88 |
response = groq_client.chat.completions.create(
|
|
|
94 |
except Exception as e:
|
95 |
print("[ERROR] Groq API error during fallback:", e)
|
96 |
return ""
|
|
|
97 |
additional_info = response.choices[0].message.content.strip()
|
98 |
print("[DEBUG] Additional information from LLM:")
|
99 |
print(additional_info)
|
100 |
return additional_info
|
101 |
|
102 |
def research_topic(topic: str) -> str:
|
103 |
+
# News sources
|
104 |
sources = {
|
105 |
"BBC": "https://feeds.bbci.co.uk/news/rss.xml",
|
106 |
"CNN": "http://rss.cnn.com/rss/edition.rss",
|
|
|
114 |
|
115 |
summary_parts = []
|
116 |
|
117 |
+
# Wikipedia summary
|
118 |
wiki_summary = fetch_wikipedia_summary(topic)
|
119 |
if wiki_summary:
|
120 |
summary_parts.append(f"From Wikipedia: {wiki_summary}")
|
|
|
136 |
continue
|
137 |
|
138 |
aggregated_info = " ".join(summary_parts)
|
139 |
+
print("[DEBUG] Aggregated info from primary sources:")
|
140 |
print(aggregated_info)
|
141 |
|
142 |
if not is_sufficient(aggregated_info):
|
|
|
158 |
search_url = f"https://en.wikipedia.org/w/api.php?action=opensearch&search={requests.utils.quote(topic)}&limit=1&namespace=0&format=json"
|
159 |
resp = requests.get(search_url)
|
160 |
if resp.status_code != 200:
|
161 |
+
print(f"[ERROR] Failed to fetch Wikipedia search results for topic: {topic}")
|
162 |
return ""
|
163 |
data = resp.json()
|
164 |
if len(data) > 1 and data[1]:
|
|
|
168 |
if s_resp.status_code == 200:
|
169 |
s_data = s_resp.json()
|
170 |
if "extract" in s_data:
|
171 |
+
print("[LOG] Wikipedia summary fetched successfully.")
|
172 |
return s_data["extract"]
|
173 |
return ""
|
174 |
except Exception as e:
|
|
|
180 |
try:
|
181 |
resp = requests.get(feed_url)
|
182 |
if resp.status_code != 200:
|
183 |
+
print(f"[ERROR] Failed to fetch RSS feed: {feed_url}")
|
184 |
return []
|
185 |
soup = BeautifulSoup(resp.content, "html.parser")
|
186 |
items = soup.find_all("item")
|
|
|
187 |
return items
|
188 |
except Exception as e:
|
189 |
print(f"[ERROR] Exception fetching RSS feed {feed_url}: {e}")
|
190 |
return []
|
191 |
|
192 |
def find_relevant_article(items, topic: str, min_match=2) -> tuple:
|
193 |
+
"""
|
194 |
+
Searches for relevant articles based on topic keywords.
|
195 |
+
"""
|
196 |
print("[LOG] Finding relevant articles...")
|
197 |
keywords = re.findall(r'\w+', topic.lower())
|
198 |
for item in items:
|
|
|
202 |
matches = sum(1 for kw in keywords if kw in text)
|
203 |
if matches >= min_match:
|
204 |
link = item.find("link").get_text().strip() if item.find("link") else ""
|
205 |
+
print(f"[LOG] Relevant article found: {title}")
|
206 |
return title, description, link
|
207 |
return None, None, None
|
208 |
|
209 |
def fetch_article_text(link: str) -> str:
|
210 |
+
print("[LOG] Fetching article text from:", link)
|
211 |
if not link:
|
212 |
return ""
|
213 |
try:
|
|
|
263 |
"}"
|
264 |
)
|
265 |
|
|
|
|
|
|
|
266 |
try:
|
267 |
response = groq_client.chat.completions.create(
|
268 |
messages=[{"role": "system", "content": prompt}],
|
|
|
283 |
data = json.loads(json_str)
|
284 |
return Dialogue(**data)
|
285 |
|
286 |
+
# --------------------------------------------------------------
|
287 |
+
# TTS Preprocessing to handle decimals, hyphens, and selective fillers
|
288 |
+
# --------------------------------------------------------------
|
289 |
+
def _preprocess_text_for_tts(text: str) -> str:
|
|
|
290 |
"""
|
291 |
+
1) Convert decimals to spelled-out words ("3.14" -> "three point one four").
|
292 |
+
2) Replace hyphens with spaces.
|
293 |
+
3) Insert filler words only in certain contexts (like "I think", or after '?').
|
294 |
"""
|
295 |
+
# 1) Convert decimals
|
296 |
+
def convert_decimal(m):
|
297 |
+
number_str = m.group() # e.g. "3.14"
|
298 |
+
parts = number_str.split('.')
|
299 |
+
whole_part = _spell_digits(parts[0]) # "three"
|
300 |
+
decimal_part = " ".join(_spell_digits(d) for d in parts[1])
|
301 |
+
return f"{whole_part} point {decimal_part}"
|
302 |
+
|
303 |
+
text = re.sub(r"\d+\.\d+", convert_decimal, text)
|
304 |
+
|
305 |
+
# 2) Hyphens -> spaces
|
306 |
+
text = re.sub(r"-", " ", text)
|
307 |
+
|
308 |
+
# 3) Targeted filler insertion
|
309 |
+
# a) Insert "uh" after "I think" or "I'm not sure", etc. (very naive approach)
|
310 |
+
text = re.sub(
|
311 |
+
r"(I think|I'm not sure|I guess)([,.]?\s)",
|
312 |
+
r"\1, uh,\2",
|
313 |
+
text,
|
314 |
+
flags=re.IGNORECASE
|
315 |
+
)
|
316 |
+
|
317 |
+
# b) If there's a "?" then sometimes insert "um," right after it
|
318 |
+
text = text.replace("?", "?<QMARK>")
|
319 |
+
def insert_filler_qmark(m):
|
320 |
if random.random() < 0.5:
|
321 |
+
return "? um,"
|
322 |
else:
|
323 |
+
return "?"
|
324 |
+
text = re.sub(r"\?<QMARK>", insert_filler_qmark, text)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
325 |
|
326 |
return text.strip()
|
327 |
|
328 |
+
def _spell_digits(d: str) -> str:
|
329 |
"""
|
330 |
+
Convert each digit '3' -> 'three', '5' -> 'five', etc.
|
|
|
|
|
331 |
"""
|
332 |
+
digit_map = {
|
333 |
+
'0': 'zero', '1': 'one', '2': 'two', '3': 'three',
|
334 |
+
'4': 'four','5': 'five','6': 'six','7': 'seven',
|
335 |
+
'8': 'eight','9': 'nine'
|
336 |
+
}
|
337 |
+
return " ".join(digit_map[ch] for ch in d if ch in digit_map)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
338 |
|
339 |
def generate_audio_mp3(text: str, speaker: str) -> str:
|
340 |
+
"""
|
341 |
+
Main TTS function, calls Deepgram with preprocessed text.
|
342 |
+
"""
|
343 |
try:
|
344 |
print(f"[LOG] Generating audio for speaker: {speaker}")
|
345 |
|
346 |
+
# Preprocess text (decimal/hyphen/fillers)
|
347 |
+
processed_text = _preprocess_text_for_tts(text)
|
348 |
+
|
349 |
+
# Define Deepgram API endpoint
|
350 |
+
deepgram_api_url = "https://api.deepgram.com/v1/speak"
|
351 |
+
params = {
|
352 |
+
"model": "aura-asteria-en", # default female
|
353 |
+
}
|
354 |
+
if speaker == "John":
|
355 |
+
params["model"] = "aura-perseus-en"
|
356 |
+
|
357 |
+
headers = {
|
358 |
+
"Accept": "audio/mpeg",
|
359 |
+
"Content-Type": "application/json",
|
360 |
+
"Authorization": f"Token {os.environ.get('DEEPGRAM_API_KEY')}"
|
361 |
+
}
|
362 |
+
body = {
|
363 |
+
"text": processed_text
|
364 |
+
}
|
365 |
+
|
366 |
+
print("[LOG] Sending TTS request to Deepgram...")
|
367 |
+
response = requests.post(deepgram_api_url, params=params, headers=headers, json=body, stream=True)
|
368 |
+
if response.status_code != 200:
|
369 |
+
raise ValueError(f"Deepgram TTS error: {response.status_code}, {response.text}")
|
370 |
|
371 |
+
content_type = response.headers.get('Content-Type', '')
|
372 |
+
if 'audio/mpeg' not in content_type:
|
373 |
+
raise ValueError("Unexpected Content-Type from Deepgram.")
|
374 |
|
375 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as mp3_file:
|
376 |
+
for chunk in response.iter_content(chunk_size=8192):
|
377 |
+
if chunk:
|
378 |
+
mp3_file.write(chunk)
|
379 |
+
mp3_path = mp3_file.name
|
380 |
|
381 |
+
# Normalize volume
|
382 |
+
audio_seg = AudioSegment.from_file(mp3_path, format="mp3")
|
383 |
+
audio_seg = effects.normalize(audio_seg)
|
384 |
|
385 |
+
final_mp3_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
|
386 |
+
audio_seg.export(final_mp3_path, format="mp3")
|
387 |
|
388 |
+
if os.path.exists(mp3_path):
|
389 |
+
os.remove(mp3_path)
|
|
|
|
|
|
|
390 |
|
|
|
|
|
|
|
|
|
391 |
return final_mp3_path
|
|
|
392 |
except Exception as e:
|
393 |
print("[ERROR] Error generating audio:", e)
|
394 |
raise ValueError(f"Error generating audio: {str(e)}")
|
395 |
|
396 |
+
def transcribe_youtube_video(video_url: str) -> str:
|
397 |
"""
|
398 |
+
Downloads and transcribes the audio from a YouTube video using Whisper (pipeline).
|
|
|
399 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
400 |
print("[LOG] Transcribing YouTube video:", video_url)
|
401 |
fd, audio_file = tempfile.mkstemp(suffix=".wav")
|
402 |
os.close(fd)
|
|
|
430 |
finally:
|
431 |
if os.path.exists(audio_file):
|
432 |
os.remove(audio_file)
|
433 |
+
print(f"[LOG] Removed temporary audio file: {audio_file}")
|