Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,146 +1,128 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
-
from
|
4 |
-
from
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
-
#
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
#
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
"content": [
|
26 |
-
{
|
27 |
-
"type": "image",
|
28 |
-
"image": image,
|
29 |
-
},
|
30 |
-
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."},
|
31 |
-
],
|
32 |
-
}
|
33 |
-
]
|
34 |
-
|
35 |
-
# Prepare for inference
|
36 |
-
text = processor.apply_chat_template(
|
37 |
-
messages, tokenize=False, add_generation_prompt=True
|
38 |
-
)
|
39 |
-
image_inputs, video_inputs = process_vision_info(messages)
|
40 |
-
inputs = processor(
|
41 |
-
text=[text],
|
42 |
-
images=image_inputs,
|
43 |
-
videos=video_inputs,
|
44 |
-
padding=True,
|
45 |
-
return_tensors="pt",
|
46 |
-
)
|
47 |
-
|
48 |
-
# Generate output
|
49 |
-
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
50 |
-
generated_ids_trimmed = [
|
51 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
52 |
-
]
|
53 |
-
output_text = processor.batch_decode(
|
54 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
55 |
-
)[0]
|
56 |
-
|
57 |
-
# Remove <|im_end|> and any other special tokens that might appear in the output
|
58 |
-
output_text = output_text.replace("<|im_end|>", "").strip()
|
59 |
-
|
60 |
-
return output_text
|
61 |
|
62 |
-
#
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
global model_instance, processor_instance
|
68 |
-
if model_instance is None or processor_instance is None:
|
69 |
-
model_instance, processor_instance = load_model()
|
70 |
-
return model_instance, processor_instance
|
71 |
-
|
72 |
-
# Optimized extraction function that uses the singleton model
|
73 |
-
def extract_medicine_names_optimized(image):
|
74 |
-
if image is None:
|
75 |
-
return "Please upload an image."
|
76 |
|
77 |
-
|
78 |
|
79 |
-
#
|
80 |
-
|
81 |
-
{
|
82 |
-
"role": "user",
|
83 |
-
"content": [
|
84 |
-
{
|
85 |
-
"type": "image",
|
86 |
-
"image": image,
|
87 |
-
},
|
88 |
-
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."},
|
89 |
-
],
|
90 |
-
}
|
91 |
-
]
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
98 |
inputs = processor(
|
99 |
-
text=[
|
100 |
-
images=
|
101 |
-
videos=video_inputs,
|
102 |
-
padding=True,
|
103 |
return_tensors="pt",
|
104 |
-
|
|
|
|
|
|
|
|
|
105 |
|
106 |
-
|
107 |
-
|
108 |
-
generated_ids_trimmed = [
|
109 |
-
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
110 |
-
]
|
111 |
-
output_text = processor.batch_decode(
|
112 |
-
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
113 |
-
)[0]
|
114 |
|
115 |
-
|
116 |
-
|
117 |
|
118 |
-
|
|
|
|
|
|
|
|
|
119 |
|
120 |
-
#
|
121 |
-
with gr.Blocks(
|
122 |
gr.Markdown("# Medicine Name Extractor")
|
123 |
-
gr.Markdown("Upload
|
124 |
|
125 |
with gr.Row():
|
126 |
with gr.Column():
|
127 |
-
|
|
|
|
|
|
|
|
|
128 |
extract_btn = gr.Button("Extract Medicine Names", variant="primary")
|
129 |
|
130 |
with gr.Column():
|
131 |
-
|
132 |
|
133 |
extract_btn.click(
|
134 |
-
fn=
|
135 |
-
inputs=
|
136 |
-
outputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
)
|
138 |
|
139 |
-
gr.Markdown("
|
140 |
-
|
141 |
-
|
142 |
-
|
|
|
|
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
app.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers.image_utils import load_image
|
3 |
+
from threading import Thread
|
4 |
+
import time
|
5 |
import torch
|
6 |
+
from PIL import Image
|
7 |
+
from transformers import (
|
8 |
+
Qwen2VLForConditionalGeneration,
|
9 |
+
AutoProcessor,
|
10 |
+
TextIteratorStreamer,
|
11 |
+
)
|
12 |
|
13 |
+
# ---------------------------
|
14 |
+
# Helper Functions
|
15 |
+
# ---------------------------
|
16 |
+
def progress_bar_html(label: str, primary_color: str = "#4B0082", secondary_color: str = "#9370DB") -> str:
|
17 |
+
"""
|
18 |
+
Returns an HTML snippet for a thin animated progress bar with a label.
|
19 |
+
"""
|
20 |
+
return f'''
|
21 |
+
<div style="display: flex; align-items: center;">
|
22 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
23 |
+
<div style="width: 110px; height: 5px; background-color: {secondary_color}; border-radius: 2px; overflow: hidden;">
|
24 |
+
<div style="width: 100%; height: 100%; background-color: {primary_color}; animation: loading 1.5s linear infinite;"></div>
|
25 |
+
</div>
|
26 |
+
</div>
|
27 |
+
<style>
|
28 |
+
@keyframes loading {{
|
29 |
+
0% {{ transform: translateX(-100%); }}
|
30 |
+
100% {{ transform: translateX(100%); }}
|
31 |
+
}}
|
32 |
+
</style>
|
33 |
+
'''
|
34 |
|
35 |
+
# Model and Processor Setup - CPU version
|
36 |
+
MODEL_ID = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
37 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
38 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
39 |
+
MODEL_ID,
|
40 |
+
trust_remote_code=True,
|
41 |
+
torch_dtype=torch.float32 # Using float32 for CPU compatibility
|
42 |
+
).to("cpu").eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Main Inference Function
|
45 |
+
def extract_medicines(image_files):
|
46 |
+
"""Extract medicine names from prescription images."""
|
47 |
+
if not image_files:
|
48 |
+
return "Please upload a prescription image."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
+
images = [load_image(image) for image in image_files]
|
51 |
|
52 |
+
# Specific prompt to extract only medicine names
|
53 |
+
text = "Extract ONLY the names of medications/medicines from this prescription image. Format the output as a numbered list of medicine names only, without dosages or instructions."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
messages = [{
|
56 |
+
"role": "user",
|
57 |
+
"content": [
|
58 |
+
*[{"type": "image", "image": image} for image in images],
|
59 |
+
{"type": "text", "text": text},
|
60 |
+
],
|
61 |
+
}]
|
62 |
+
|
63 |
+
prompt_full = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
64 |
inputs = processor(
|
65 |
+
text=[prompt_full],
|
66 |
+
images=images,
|
|
|
|
|
67 |
return_tensors="pt",
|
68 |
+
padding=True,
|
69 |
+
).to("cpu")
|
70 |
+
|
71 |
+
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True)
|
72 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
73 |
|
74 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
75 |
+
thread.start()
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
buffer = ""
|
78 |
+
yield progress_bar_html("Extracting Medicine Names")
|
79 |
|
80 |
+
for new_text in streamer:
|
81 |
+
buffer += new_text
|
82 |
+
buffer = buffer.replace("<|im_end|>", "")
|
83 |
+
time.sleep(0.01)
|
84 |
+
yield buffer
|
85 |
|
86 |
+
# Gradio Interface
|
87 |
+
with gr.Blocks() as demo:
|
88 |
gr.Markdown("# Medicine Name Extractor")
|
89 |
+
gr.Markdown("Upload prescription images to extract medicine names")
|
90 |
|
91 |
with gr.Row():
|
92 |
with gr.Column():
|
93 |
+
image_input = gr.File(
|
94 |
+
label="Upload Prescription Image(s)",
|
95 |
+
file_count="multiple",
|
96 |
+
file_types=["image"]
|
97 |
+
)
|
98 |
extract_btn = gr.Button("Extract Medicine Names", variant="primary")
|
99 |
|
100 |
with gr.Column():
|
101 |
+
output = gr.Markdown(label="Extracted Medicine Names")
|
102 |
|
103 |
extract_btn.click(
|
104 |
+
fn=extract_medicines,
|
105 |
+
inputs=image_input,
|
106 |
+
outputs=output
|
107 |
+
)
|
108 |
+
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
["examples/prescription1.jpg"],
|
112 |
+
["examples/prescription2.jpg"],
|
113 |
+
],
|
114 |
+
inputs=image_input,
|
115 |
+
outputs=output,
|
116 |
+
fn=extract_medicines,
|
117 |
+
cache_examples=True,
|
118 |
)
|
119 |
|
120 |
+
gr.Markdown("""
|
121 |
+
### Notes:
|
122 |
+
- This app is optimized to run on CPU
|
123 |
+
- Upload clear images of prescriptions for best results
|
124 |
+
- Only medicine names will be extracted
|
125 |
+
""")
|
126 |
|
127 |
+
demo.queue()
|
128 |
+
demo.launch(debug=True)
|
|