Spaces:
Running
Running
Update v1.txt
Browse files
v1.txt
CHANGED
@@ -54,6 +54,67 @@ def extract_medicine_names(image):
|
|
54 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
55 |
)[0]
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
return output_text
|
58 |
|
59 |
# Create Gradio interface
|
@@ -70,7 +131,7 @@ with gr.Blocks(title="Medicine Name Extractor") as app:
|
|
70 |
output_text = gr.Textbox(label="Extracted Medicine Names", lines=10)
|
71 |
|
72 |
extract_btn.click(
|
73 |
-
fn=
|
74 |
inputs=input_image,
|
75 |
outputs=output_text
|
76 |
)
|
|
|
54 |
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
55 |
)[0]
|
56 |
|
57 |
+
# Remove <|im_end|> and any other special tokens that might appear in the output
|
58 |
+
output_text = output_text.replace("<|im_end|>", "").strip()
|
59 |
+
|
60 |
+
return output_text
|
61 |
+
|
62 |
+
# Create a singleton model and processor to avoid reloading for each request
|
63 |
+
model_instance = None
|
64 |
+
processor_instance = None
|
65 |
+
|
66 |
+
def get_model_and_processor():
|
67 |
+
global model_instance, processor_instance
|
68 |
+
if model_instance is None or processor_instance is None:
|
69 |
+
model_instance, processor_instance = load_model()
|
70 |
+
return model_instance, processor_instance
|
71 |
+
|
72 |
+
# Optimized extraction function that uses the singleton model
|
73 |
+
def extract_medicine_names_optimized(image):
|
74 |
+
if image is None:
|
75 |
+
return "Please upload an image."
|
76 |
+
|
77 |
+
model, processor = get_model_and_processor()
|
78 |
+
|
79 |
+
# Prepare the message with the specific prompt for medicine extraction
|
80 |
+
messages = [
|
81 |
+
{
|
82 |
+
"role": "user",
|
83 |
+
"content": [
|
84 |
+
{
|
85 |
+
"type": "image",
|
86 |
+
"image": image,
|
87 |
+
},
|
88 |
+
{"type": "text", "text": "Extract and list ONLY the names of medicines/drugs from this prescription image. Output the medicine names as a numbered list without any additional information or descriptions."},
|
89 |
+
],
|
90 |
+
}
|
91 |
+
]
|
92 |
+
|
93 |
+
# Prepare for inference
|
94 |
+
text = processor.apply_chat_template(
|
95 |
+
messages, tokenize=False, add_generation_prompt=True
|
96 |
+
)
|
97 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
98 |
+
inputs = processor(
|
99 |
+
text=[text],
|
100 |
+
images=image_inputs,
|
101 |
+
videos=video_inputs,
|
102 |
+
padding=True,
|
103 |
+
return_tensors="pt",
|
104 |
+
)
|
105 |
+
|
106 |
+
# Generate output
|
107 |
+
generated_ids = model.generate(**inputs, max_new_tokens=256)
|
108 |
+
generated_ids_trimmed = [
|
109 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
110 |
+
]
|
111 |
+
output_text = processor.batch_decode(
|
112 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
113 |
+
)[0]
|
114 |
+
|
115 |
+
# Remove <|im_end|> and any other special tokens that might appear in the output
|
116 |
+
output_text = output_text.replace("<|im_end|>", "").strip()
|
117 |
+
|
118 |
return output_text
|
119 |
|
120 |
# Create Gradio interface
|
|
|
131 |
output_text = gr.Textbox(label="Extracted Medicine Names", lines=10)
|
132 |
|
133 |
extract_btn.click(
|
134 |
+
fn=extract_medicine_names_optimized,
|
135 |
inputs=input_image,
|
136 |
outputs=output_text
|
137 |
)
|