File size: 4,822 Bytes
c93d183
3a249bb
 
 
 
3d2120b
 
3a249bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c93d183
829d082
c93d183
 
 
 
 
 
 
 
 
 
b3dcea1
 
 
c93d183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
829d082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75d548f
815e99c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
'''import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

# Load model and tokenizer from your HF model repo
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

def classify_sentiment(text):
    inputs = tokenizer(text, return_tensors="tf", padding=True, truncation=True)
    predictions = model(inputs).logits
    label = tf.argmax(predictions, axis=1).numpy()[0]
    labels = {0: "Negative", 1: "Neutral", 2: "Positive"}
    return labels[label]

demo = gr.Interface(fn=classify_sentiment,
                    inputs=gr.Textbox(placeholder="Enter a tweet..."),
                    outputs="text",
                    title="Tweet Sentiment Classifier",
                    description="Multilingual BERT-based Sentiment Analysis")

demo.launch()
'''
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf

# Load model and tokenizer from Hugging Face
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

# Manually define the correct mapping
LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

def classify_sentiment(text):
    inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
    outputs = model(inputs)
    probs = tf.nn.softmax(outputs.logits, axis=1)
    pred_label = tf.argmax(probs, axis=1).numpy()[0]
    confidence = float(tf.reduce_max(probs).numpy())
    return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"

demo = gr.Interface(
    fn=classify_sentiment,
    inputs=gr.Textbox(placeholder="Type your tweet here..."),
    outputs="text",
    title="Sentiment Analysis on Tweets",
    description="Multilingual BERT model fine-tuned for sentiment classification. Labels: Positive, Neutral, Negative."
)

demo.launch()
'''
import gradio as gr
from transformers import TFBertForSequenceClassification, BertTokenizer
import tensorflow as tf
import snscrape.modules.twitter as sntwitter
import praw
import os

# Load model and tokenizer
model = TFBertForSequenceClassification.from_pretrained("shrish191/sentiment-bert")
tokenizer = BertTokenizer.from_pretrained("shrish191/sentiment-bert")

# Label Mapping
LABELS = {
    0: "Neutral",
    1: "Positive",
    2: "Negative"
}

# Reddit API setup with environment variables
reddit = praw.Reddit(
    client_id=os.getenv("REDDIT_CLIENT_ID"),
    client_secret=os.getenv("REDDIT_CLIENT_SECRET"),
    user_agent=os.getenv("REDDIT_USER_AGENT", "sentiment-classifier-script")
)

# Tweet text extractor
def fetch_tweet_text(tweet_url):
    try:
        tweet_id = tweet_url.split("/")[-1]
        for tweet in sntwitter.TwitterTweetScraper(tweet_id).get_items():
            return tweet.content
        return "Unable to extract tweet content."
    except Exception as e:
        return f"Error fetching tweet: {str(e)}"

# Reddit post extractor
def fetch_reddit_text(reddit_url):
    try:
        submission = reddit.submission(url=reddit_url)
        return f"{submission.title}\n\n{submission.selftext}"
    except Exception as e:
        return f"Error fetching Reddit post: {str(e)}"

# Sentiment classification logic
def classify_sentiment(text_input, tweet_url, reddit_url):
    if reddit_url.strip():
        text = fetch_reddit_text(reddit_url)
    elif tweet_url.strip():
        text = fetch_tweet_text(tweet_url)
    elif text_input.strip():
        text = text_input
    else:
        return "[!] Please enter text or a post URL."

    if text.lower().startswith("error") or "Unable to extract" in text:
        return f"[!] Error: {text}"

    try:
        inputs = tokenizer(text, return_tensors="tf", truncation=True, padding=True)
        outputs = model(inputs)
        probs = tf.nn.softmax(outputs.logits, axis=1)
        pred_label = tf.argmax(probs, axis=1).numpy()[0]
        confidence = float(tf.reduce_max(probs).numpy())
        return f"Prediction: {LABELS[pred_label]} (Confidence: {confidence:.2f})"
    except Exception as e:
        return f"[!] Prediction error: {str(e)}"

# Gradio Interface
demo = gr.Interface(
    fn=classify_sentiment,
    inputs=[
        gr.Textbox(label="Custom Text Input", placeholder="Type your tweet or message here..."),
        gr.Textbox(label="Tweet URL", placeholder="Paste a tweet URL here (optional)"),
        gr.Textbox(label="Reddit Post URL", placeholder="Paste a Reddit post URL here (optional)")
    ],
    outputs="text",
    title="Multilingual Sentiment Analysis",
    description="Analyze sentiment of text, tweets, or Reddit posts. Supports multiple languages using BERT!"
)

demo.launch()