File size: 1,033 Bytes
9249e5d 2f53d0e 9249e5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 |
def get_classification_report():
from sklearn.metrics import classification_report
import pandas as pd
# Load your test data
df = pd.read_csv("test.csv")
texts = df["text"].tolist()
true_labels = df["label"].tolist()
# Load tokenizer and model
#tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment")
#model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment")
fallback_model_name = "cardiffnlp/twitter-roberta-base-sentiment"
fallback_tokenizer = AutoTokenizer.from_pretrained(fallback_model_name)
fallback_model = AutoModelForSequenceClassification.from_pretrained(fallback_model_name)
# Tokenize and predict
inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
outputs = model(inputs)
predictions = tf.math.argmax(outputs.logits, axis=1).numpy()
# Generate report
report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"])
return report
|