shrish191 commited on
Commit
9249e5d
·
verified ·
1 Parent(s): 9634b65

Create evaluate.py

Browse files
Files changed (1) hide show
  1. evaluate.py +21 -0
evaluate.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def get_classification_report():
2
+ from sklearn.metrics import classification_report
3
+ import pandas as pd
4
+
5
+ # Load your test data
6
+ df = pd.read_csv("test.csv")
7
+ texts = df["text"].tolist()
8
+ true_labels = df["label"].tolist()
9
+
10
+ # Load tokenizer and model
11
+ tokenizer = AutoTokenizer.from_pretrained("Shrish/mbert-sentiment")
12
+ model = TFAutoModelForSequenceClassification.from_pretrained("Shrish/mbert-sentiment")
13
+
14
+ # Tokenize and predict
15
+ inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="tf")
16
+ outputs = model(inputs)
17
+ predictions = tf.math.argmax(outputs.logits, axis=1).numpy()
18
+
19
+ # Generate report
20
+ report = classification_report(true_labels, predictions, target_names=["negative", "neutral", "positive"])
21
+ return report