Spaces:
Sleeping
Sleeping
File size: 11,049 Bytes
364061c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import streamlit as st
import requests
import os
import google.generativeai as genai
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import TextVectorization
# --- Config ---
vocab_size = 10000
sequence_length = 150
# Load API keys
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
# Hugging Face setup
MODEL_ID = "Salesforce/codet5p-770m"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
genai.configure(api_key="AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg")
# --- Load Local Model & Vectorizers ---
model = tf.keras.models.load_model("java_to_python_seq2seq_model.h5")
java_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
python_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
# Dummy adaptation to initialize
java_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["public class Main { public static void main(String[] args) {} }"]))
python_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["def main():\n pass"]))
python_vocab = python_vectorizer.get_vocabulary()
index_to_word = dict(enumerate(python_vocab))
# --- Translator Functions ---
def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
{code_snippet}
Ensure the translation is accurate and follows {target_lang} best practices.
Do not give any explanation. Only give the translated code.
"""
try:
model = genai.GenerativeModel("gemini-1.5-pro")
response = model.generate_content(prompt)
return response.text.strip() if response else "Translation failed."
except Exception as e:
return f"Gemini API Error: {str(e)}"
def translate_with_local_model(code_snippet):
try:
java_seq = java_vectorizer(tf.constant([code_snippet]))
python_in = tf.constant([[1] + [0] * (sequence_length - 1)])
translated_tokens = []
for i in range(sequence_length):
preds = model.predict([java_seq, python_in], verbose=0)
next_token = tf.argmax(preds[0, i]).numpy()
translated_tokens.append(next_token)
if next_token == 0:
break
if i + 1 < sequence_length:
python_in = tf.tensor_scatter_nd_update(
python_in, [[0, i + 1]], [next_token]
)
tokens = [index_to_word.get(t, "") for t in translated_tokens]
return " ".join(tokens).replace("[UNK]", "").strip()
except Exception as e:
return f"Local Model Error: {str(e)}"
def translate_code(code_snippet, source_lang, target_lang):
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
response = requests.post(API_URL, headers=HEADERS, json={
"inputs": prompt,
"parameters": {"max_new_tokens": 150, "temperature": 0.2, "top_k": 50}
})
if response.status_code == 200:
generated_text = response.json()[0]["generated_text"]
translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
return translated_code
else:
return f"Error: {response.status_code}, {response.text}"
# --- Streamlit UI ---
st.title("π Programming Language Translator")
st.write("Translate code between programming languages using 3-tier logic:")
languages = ["Python", "Java", "C++", "C"]
source_lang = st.selectbox("Select source language", languages)
target_lang = st.selectbox("Select target language", languages)
code_input = st.text_area("Enter your code here:", height=200)
# State initialization
if "translate_attempts" not in st.session_state:
st.session_state.translate_attempts = 0
st.session_state.translated_code = ""
if st.button("Translate"):
if code_input.strip():
st.session_state.translate_attempts += 1
attempt = st.session_state.translate_attempts
with st.spinner(f"Translating..."):
# First click
if attempt == 1:
if source_lang == "Java" and target_lang == "Python":
st.session_state.translated_code = translate_with_local_model(code_input)
else:
st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
else:
# Second and later attempts -> Gemini
st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
st.subheader("Translated Code:")
st.code(st.session_state.translated_code, language=target_lang.lower())
else:
st.warning("β οΈ Please enter some code before translating.")
# Best version. It doesn't having trained model only.
# import streamlit as st
# import requests
# import os # To access environment variables
# import google.generativeai as genai # Import Gemini API
# # Load API keys from environment variables
# HF_API_TOKEN = os.getenv("HF_API_TOKEN")
# GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
# # Set up Hugging Face API
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
# # Initialize Gemini API
# genai.configure(api_key='AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg')
# def translate_code(code_snippet, source_lang, target_lang):
# """Translate code using Hugging Face API."""
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
# response = requests.post(API_URL, headers=HEADERS, json={
# "inputs": prompt,
# "parameters": {
# "max_new_tokens": 150,
# "temperature": 0.2,
# "top_k": 50
# }
# })
# if response.status_code == 200:
# generated_text = response.json()[0]["generated_text"]
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
# return translated_code
# else:
# return f"Error: {response.status_code}, {response.text}"
# def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
# """Fallback function using Gemini API for translation."""
# prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
# {code_snippet}
# Ensure the translation is accurate and follows {target_lang} best practices.
# Do not give any explaination. only give the translated code.
# """
# try:
# model = genai.GenerativeModel("gemini-1.5-pro")
# response = model.generate_content(prompt)
# return response.text.strip() if response else "Translation failed."
# except Exception as e:
# return f"Gemini API Error: {str(e)}"
# # Streamlit UI
# st.title("π Code Translator with Gemini AI")
# st.write("Translate code between different programming languages using AI.")
# languages = ["Python", "Java", "C++", "C"]
# source_lang = st.selectbox("Select source language", languages)
# target_lang = st.selectbox("Select target language", languages)
# code_input = st.text_area("Enter your code here:", height=200)
# # Initialize session state
# if "translate_attempts" not in st.session_state:
# st.session_state.translate_attempts = 0
# st.session_state.translated_code = ""
# if st.button("Translate"):
# if code_input.strip():
# st.session_state.translate_attempts += 1
# with st.spinner("Translating..."):
# if st.session_state.translate_attempts == 1:
# # First attempt using the pretrained model
# st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
# else:
# # Second attempt uses Gemini API
# st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
# st.subheader("Translated Code:")
# st.code(st.session_state.translated_code, language=target_lang.lower())
# else:
# st.warning("β οΈ Please enter some code before translating.")
# V1 without LLM
# import streamlit as st
# import requests
# import os # Import os to access environment variables
# # Get API token from environment variable
# API_TOKEN = os.getenv("HF_API_TOKEN") # Fetch token securely
# # Change MODEL_ID to a better model
# # MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
# MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
# # MODEL_ID = "meta-llama/CodeLlama-34b-Instruct" # Code Llama
# # API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
# def translate_code(code_snippet, source_lang, target_lang):
# """Translate code using Hugging Face API securely."""
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
# response = requests.post(API_URL, headers=HEADERS, json={
# "inputs": prompt,
# "parameters": {
# "max_new_tokens": 150,
# "temperature": 0.2,
# "top_k": 50,
# "stop": ["\n\n", "#", "//", "'''"]
# }
# })
# if response.status_code == 200:
# generated_text = response.json()[0]["generated_text"]
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
# return translated_code
# else:
# return f"Error: {response.status_code}, {response.text}"
# # Streamlit UI
# st.title("π Code Translator using StarCoder")
# st.write("Translate code between different programming languages using AI.")
# languages = ["Python", "Java", "C++", "C"]
# source_lang = st.selectbox("Select source language", languages)
# target_lang = st.selectbox("Select target language", languages)
# code_input = st.text_area("Enter your code here:", height=200)
# if st.button("Translate"):
# if code_input.strip():
# with st.spinner("Translating..."):
# translated_code = translate_code(code_input, source_lang, target_lang)
# st.subheader("Translated Code:")
# st.code(translated_code, language=target_lang.lower())
# else:
# st.warning("β οΈ Please enter some code before translating.")
|