File size: 11,049 Bytes
364061c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import streamlit as st
import requests
import os
import google.generativeai as genai
import tensorflow as tf
import numpy as np
from tensorflow.keras.layers import TextVectorization

# --- Config ---
vocab_size = 10000
sequence_length = 150

# Load API keys
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")

# Hugging Face setup
MODEL_ID = "Salesforce/codet5p-770m"
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}

genai.configure(api_key="AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg")

# --- Load Local Model & Vectorizers ---
model = tf.keras.models.load_model("java_to_python_seq2seq_model.h5")

java_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
python_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)

# Dummy adaptation to initialize
java_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["public class Main { public static void main(String[] args) {} }"]))
python_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["def main():\n    pass"]))

python_vocab = python_vectorizer.get_vocabulary()
index_to_word = dict(enumerate(python_vocab))

# --- Translator Functions ---

def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
    prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:

    

    {code_snippet}



    Ensure the translation is accurate and follows {target_lang} best practices.

    Do not give any explanation. Only give the translated code.

    """
    try:
        model = genai.GenerativeModel("gemini-1.5-pro")
        response = model.generate_content(prompt)
        return response.text.strip() if response else "Translation failed."
    except Exception as e:
        return f"Gemini API Error: {str(e)}"

def translate_with_local_model(code_snippet):
    try:
        java_seq = java_vectorizer(tf.constant([code_snippet]))
        python_in = tf.constant([[1] + [0] * (sequence_length - 1)])
        translated_tokens = []

        for i in range(sequence_length):
            preds = model.predict([java_seq, python_in], verbose=0)
            next_token = tf.argmax(preds[0, i]).numpy()
            translated_tokens.append(next_token)
            if next_token == 0:
                break
            if i + 1 < sequence_length:
                python_in = tf.tensor_scatter_nd_update(
                    python_in, [[0, i + 1]], [next_token]
                )

        tokens = [index_to_word.get(t, "") for t in translated_tokens]
        return " ".join(tokens).replace("[UNK]", "").strip()

    except Exception as e:
        return f"Local Model Error: {str(e)}"

def translate_code(code_snippet, source_lang, target_lang):
    prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
    response = requests.post(API_URL, headers=HEADERS, json={
        "inputs": prompt,
        "parameters": {"max_new_tokens": 150, "temperature": 0.2, "top_k": 50}
    })

    if response.status_code == 200:
        generated_text = response.json()[0]["generated_text"]
        translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
        return translated_code
    else:
        return f"Error: {response.status_code}, {response.text}"

# --- Streamlit UI ---

st.title("πŸ”„  Programming Language Translator")
st.write("Translate code between programming languages using 3-tier logic:")

languages = ["Python", "Java", "C++", "C"]
source_lang = st.selectbox("Select source language", languages)
target_lang = st.selectbox("Select target language", languages)
code_input = st.text_area("Enter your code here:", height=200)

# State initialization
if "translate_attempts" not in st.session_state:
    st.session_state.translate_attempts = 0
    st.session_state.translated_code = ""

if st.button("Translate"):
    if code_input.strip():
        st.session_state.translate_attempts += 1
        attempt = st.session_state.translate_attempts

        with st.spinner(f"Translating..."):
            # First click
            if attempt == 1:
                if source_lang == "Java" and target_lang == "Python":
                    st.session_state.translated_code = translate_with_local_model(code_input)
                else:
                    st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
            else:
                # Second and later attempts -> Gemini
                st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)

        st.subheader("Translated Code:")
        st.code(st.session_state.translated_code, language=target_lang.lower())
    else:
        st.warning("⚠️ Please enter some code before translating.")







# Best version. It doesn't having trained model only.

# import streamlit as st
# import requests
# import os  # To access environment variables
# import google.generativeai as genai  # Import Gemini API

# # Load API keys from environment variables
# HF_API_TOKEN = os.getenv("HF_API_TOKEN")
# GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")

# # Set up Hugging Face API
# MODEL_ID = "Salesforce/codet5p-770m"  # CodeT5+ (Recommended)
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}

# # Initialize Gemini API
# genai.configure(api_key='AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg')

# def translate_code(code_snippet, source_lang, target_lang):
#     """Translate code using Hugging Face API."""
#     prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"

#     response = requests.post(API_URL, headers=HEADERS, json={
#         "inputs": prompt,
#         "parameters": {
#             "max_new_tokens": 150,
#             "temperature": 0.2,
#             "top_k": 50
#         }
#     })

#     if response.status_code == 200:
#         generated_text = response.json()[0]["generated_text"]
#         translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
#         return translated_code
#     else:
#         return f"Error: {response.status_code}, {response.text}"

# def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
#     """Fallback function using Gemini API for translation."""
#     prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
    
#     {code_snippet}

#     Ensure the translation is accurate and follows {target_lang} best practices.
#     Do not give any explaination. only give the translated code.
#     """
#     try:
#         model = genai.GenerativeModel("gemini-1.5-pro")
#         response = model.generate_content(prompt)
#         return response.text.strip() if response else "Translation failed."
#     except Exception as e:
#         return f"Gemini API Error: {str(e)}"

# # Streamlit UI
# st.title("πŸ”„ Code Translator with Gemini AI")
# st.write("Translate code between different programming languages using AI.")

# languages = ["Python", "Java", "C++", "C"]

# source_lang = st.selectbox("Select source language", languages)
# target_lang = st.selectbox("Select target language", languages)
# code_input = st.text_area("Enter your code here:", height=200)

# # Initialize session state
# if "translate_attempts" not in st.session_state:
#     st.session_state.translate_attempts = 0
#     st.session_state.translated_code = ""

# if st.button("Translate"):
#     if code_input.strip():
#         st.session_state.translate_attempts += 1
#         with st.spinner("Translating..."):
#             if st.session_state.translate_attempts == 1:
#                 # First attempt using the pretrained model
#                 st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
#             else:
#                 # Second attempt uses Gemini API
#                 st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)

#         st.subheader("Translated Code:")
#         st.code(st.session_state.translated_code, language=target_lang.lower())
#     else:
#         st.warning("⚠️ Please enter some code before translating.")












# V1 without LLM

# import streamlit as st
# import requests
# import os  # Import os to access environment variables

# # Get API token from environment variable
# API_TOKEN = os.getenv("HF_API_TOKEN")  # Fetch token securely
# # Change MODEL_ID to a better model
# # MODEL_ID = "Salesforce/codet5p-770m"  # CodeT5+ (Recommended)
# MODEL_ID = "bigcode/starcoder2-15b"  # StarCoder2
# # MODEL_ID = "meta-llama/CodeLlama-34b-Instruct"  # Code Llama

# # API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"

# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
# HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}

# def translate_code(code_snippet, source_lang, target_lang):
#     """Translate code using Hugging Face API securely."""
#     prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"

#     response = requests.post(API_URL, headers=HEADERS, json={
#         "inputs": prompt,
#         "parameters": {
#             "max_new_tokens": 150,
#             "temperature": 0.2,
#             "top_k": 50,
#             "stop": ["\n\n", "#", "//", "'''"]
#         }
#     })

#     if response.status_code == 200:
#         generated_text = response.json()[0]["generated_text"]
#         translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
#         return translated_code
#     else:
#         return f"Error: {response.status_code}, {response.text}"

# # Streamlit UI
# st.title("πŸ”„ Code Translator using StarCoder")
# st.write("Translate code between different programming languages using AI.")

# languages = ["Python", "Java", "C++", "C"]

# source_lang = st.selectbox("Select source language", languages)
# target_lang = st.selectbox("Select target language", languages)
# code_input = st.text_area("Enter your code here:", height=200)

# if st.button("Translate"):
#     if code_input.strip():
#         with st.spinner("Translating..."):
#             translated_code = translate_code(code_input, source_lang, target_lang)
#             st.subheader("Translated Code:")
#             st.code(translated_code, language=target_lang.lower())
#     else:
#         st.warning("⚠️ Please enter some code before translating.")