Spaces:
Sleeping
Sleeping
Upload 5 files
Browse files- .gitattributes +1 -0
- app.py +286 -0
- java_to_python_seq2seq_model.h5 +3 -0
- java_to_python_seq2seq_model.pdf +3 -0
- requirements.txt +12 -0
- translator.py +35 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
java_to_python_seq2seq_model.pdf filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import google.generativeai as genai
|
5 |
+
import tensorflow as tf
|
6 |
+
import numpy as np
|
7 |
+
from tensorflow.keras.layers import TextVectorization
|
8 |
+
|
9 |
+
# --- Config ---
|
10 |
+
vocab_size = 10000
|
11 |
+
sequence_length = 150
|
12 |
+
|
13 |
+
# Load API keys
|
14 |
+
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
15 |
+
GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
|
16 |
+
|
17 |
+
# Hugging Face setup
|
18 |
+
MODEL_ID = "Salesforce/codet5p-770m"
|
19 |
+
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
20 |
+
HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
21 |
+
|
22 |
+
genai.configure(api_key="AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg")
|
23 |
+
|
24 |
+
# --- Load Local Model & Vectorizers ---
|
25 |
+
model = tf.keras.models.load_model("java_to_python_seq2seq_model.h5")
|
26 |
+
|
27 |
+
java_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
|
28 |
+
python_vectorizer = TextVectorization(max_tokens=vocab_size, output_sequence_length=sequence_length)
|
29 |
+
|
30 |
+
# Dummy adaptation to initialize
|
31 |
+
java_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["public class Main { public static void main(String[] args) {} }"]))
|
32 |
+
python_vectorizer.adapt(tf.data.Dataset.from_tensor_slices(["def main():\n pass"]))
|
33 |
+
|
34 |
+
python_vocab = python_vectorizer.get_vocabulary()
|
35 |
+
index_to_word = dict(enumerate(python_vocab))
|
36 |
+
|
37 |
+
# --- Translator Functions ---
|
38 |
+
|
39 |
+
def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
40 |
+
prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
|
41 |
+
|
42 |
+
{code_snippet}
|
43 |
+
|
44 |
+
Ensure the translation is accurate and follows {target_lang} best practices.
|
45 |
+
Do not give any explanation. Only give the translated code.
|
46 |
+
"""
|
47 |
+
try:
|
48 |
+
model = genai.GenerativeModel("gemini-1.5-pro")
|
49 |
+
response = model.generate_content(prompt)
|
50 |
+
return response.text.strip() if response else "Translation failed."
|
51 |
+
except Exception as e:
|
52 |
+
return f"Gemini API Error: {str(e)}"
|
53 |
+
|
54 |
+
def translate_with_local_model(code_snippet):
|
55 |
+
try:
|
56 |
+
java_seq = java_vectorizer(tf.constant([code_snippet]))
|
57 |
+
python_in = tf.constant([[1] + [0] * (sequence_length - 1)])
|
58 |
+
translated_tokens = []
|
59 |
+
|
60 |
+
for i in range(sequence_length):
|
61 |
+
preds = model.predict([java_seq, python_in], verbose=0)
|
62 |
+
next_token = tf.argmax(preds[0, i]).numpy()
|
63 |
+
translated_tokens.append(next_token)
|
64 |
+
if next_token == 0:
|
65 |
+
break
|
66 |
+
if i + 1 < sequence_length:
|
67 |
+
python_in = tf.tensor_scatter_nd_update(
|
68 |
+
python_in, [[0, i + 1]], [next_token]
|
69 |
+
)
|
70 |
+
|
71 |
+
tokens = [index_to_word.get(t, "") for t in translated_tokens]
|
72 |
+
return " ".join(tokens).replace("[UNK]", "").strip()
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
return f"Local Model Error: {str(e)}"
|
76 |
+
|
77 |
+
def translate_code(code_snippet, source_lang, target_lang):
|
78 |
+
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
79 |
+
response = requests.post(API_URL, headers=HEADERS, json={
|
80 |
+
"inputs": prompt,
|
81 |
+
"parameters": {"max_new_tokens": 150, "temperature": 0.2, "top_k": 50}
|
82 |
+
})
|
83 |
+
|
84 |
+
if response.status_code == 200:
|
85 |
+
generated_text = response.json()[0]["generated_text"]
|
86 |
+
translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
|
87 |
+
return translated_code
|
88 |
+
else:
|
89 |
+
return f"Error: {response.status_code}, {response.text}"
|
90 |
+
|
91 |
+
# --- Streamlit UI ---
|
92 |
+
|
93 |
+
st.title("🔄 Programming Language Translator")
|
94 |
+
st.write("Translate code between programming languages using 3-tier logic:")
|
95 |
+
|
96 |
+
languages = ["Python", "Java", "C++", "C"]
|
97 |
+
source_lang = st.selectbox("Select source language", languages)
|
98 |
+
target_lang = st.selectbox("Select target language", languages)
|
99 |
+
code_input = st.text_area("Enter your code here:", height=200)
|
100 |
+
|
101 |
+
# State initialization
|
102 |
+
if "translate_attempts" not in st.session_state:
|
103 |
+
st.session_state.translate_attempts = 0
|
104 |
+
st.session_state.translated_code = ""
|
105 |
+
|
106 |
+
if st.button("Translate"):
|
107 |
+
if code_input.strip():
|
108 |
+
st.session_state.translate_attempts += 1
|
109 |
+
attempt = st.session_state.translate_attempts
|
110 |
+
|
111 |
+
with st.spinner(f"Translating..."):
|
112 |
+
# First click
|
113 |
+
if attempt == 1:
|
114 |
+
if source_lang == "Java" and target_lang == "Python":
|
115 |
+
st.session_state.translated_code = translate_with_local_model(code_input)
|
116 |
+
else:
|
117 |
+
st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
|
118 |
+
else:
|
119 |
+
# Second and later attempts -> Gemini
|
120 |
+
st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
|
121 |
+
|
122 |
+
st.subheader("Translated Code:")
|
123 |
+
st.code(st.session_state.translated_code, language=target_lang.lower())
|
124 |
+
else:
|
125 |
+
st.warning("⚠️ Please enter some code before translating.")
|
126 |
+
|
127 |
+
|
128 |
+
|
129 |
+
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
# Best version. It doesn't having trained model only.
|
134 |
+
|
135 |
+
# import streamlit as st
|
136 |
+
# import requests
|
137 |
+
# import os # To access environment variables
|
138 |
+
# import google.generativeai as genai # Import Gemini API
|
139 |
+
|
140 |
+
# # Load API keys from environment variables
|
141 |
+
# HF_API_TOKEN = os.getenv("HF_API_TOKEN")
|
142 |
+
# GEMINI_API_KEY = os.getenv("GOOGLE_API_KEY")
|
143 |
+
|
144 |
+
# # Set up Hugging Face API
|
145 |
+
# MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
146 |
+
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
147 |
+
# HEADERS = {"Authorization": f"Bearer {HF_API_TOKEN}"}
|
148 |
+
|
149 |
+
# # Initialize Gemini API
|
150 |
+
# genai.configure(api_key='AIzaSyBkc8CSEhyYwZAuUiJfzF1Xtns-RYmBOpg')
|
151 |
+
|
152 |
+
# def translate_code(code_snippet, source_lang, target_lang):
|
153 |
+
# """Translate code using Hugging Face API."""
|
154 |
+
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
155 |
+
|
156 |
+
# response = requests.post(API_URL, headers=HEADERS, json={
|
157 |
+
# "inputs": prompt,
|
158 |
+
# "parameters": {
|
159 |
+
# "max_new_tokens": 150,
|
160 |
+
# "temperature": 0.2,
|
161 |
+
# "top_k": 50
|
162 |
+
# }
|
163 |
+
# })
|
164 |
+
|
165 |
+
# if response.status_code == 200:
|
166 |
+
# generated_text = response.json()[0]["generated_text"]
|
167 |
+
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
|
168 |
+
# return translated_code
|
169 |
+
# else:
|
170 |
+
# return f"Error: {response.status_code}, {response.text}"
|
171 |
+
|
172 |
+
# def fallback_translate_with_gemini(code_snippet, source_lang, target_lang):
|
173 |
+
# """Fallback function using Gemini API for translation."""
|
174 |
+
# prompt = f"""You are a code translation expert. Convert the following {source_lang} code to {target_lang}:
|
175 |
+
|
176 |
+
# {code_snippet}
|
177 |
+
|
178 |
+
# Ensure the translation is accurate and follows {target_lang} best practices.
|
179 |
+
# Do not give any explaination. only give the translated code.
|
180 |
+
# """
|
181 |
+
# try:
|
182 |
+
# model = genai.GenerativeModel("gemini-1.5-pro")
|
183 |
+
# response = model.generate_content(prompt)
|
184 |
+
# return response.text.strip() if response else "Translation failed."
|
185 |
+
# except Exception as e:
|
186 |
+
# return f"Gemini API Error: {str(e)}"
|
187 |
+
|
188 |
+
# # Streamlit UI
|
189 |
+
# st.title("🔄 Code Translator with Gemini AI")
|
190 |
+
# st.write("Translate code between different programming languages using AI.")
|
191 |
+
|
192 |
+
# languages = ["Python", "Java", "C++", "C"]
|
193 |
+
|
194 |
+
# source_lang = st.selectbox("Select source language", languages)
|
195 |
+
# target_lang = st.selectbox("Select target language", languages)
|
196 |
+
# code_input = st.text_area("Enter your code here:", height=200)
|
197 |
+
|
198 |
+
# # Initialize session state
|
199 |
+
# if "translate_attempts" not in st.session_state:
|
200 |
+
# st.session_state.translate_attempts = 0
|
201 |
+
# st.session_state.translated_code = ""
|
202 |
+
|
203 |
+
# if st.button("Translate"):
|
204 |
+
# if code_input.strip():
|
205 |
+
# st.session_state.translate_attempts += 1
|
206 |
+
# with st.spinner("Translating..."):
|
207 |
+
# if st.session_state.translate_attempts == 1:
|
208 |
+
# # First attempt using the pretrained model
|
209 |
+
# st.session_state.translated_code = translate_code(code_input, source_lang, target_lang)
|
210 |
+
# else:
|
211 |
+
# # Second attempt uses Gemini API
|
212 |
+
# st.session_state.translated_code = fallback_translate_with_gemini(code_input, source_lang, target_lang)
|
213 |
+
|
214 |
+
# st.subheader("Translated Code:")
|
215 |
+
# st.code(st.session_state.translated_code, language=target_lang.lower())
|
216 |
+
# else:
|
217 |
+
# st.warning("⚠️ Please enter some code before translating.")
|
218 |
+
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
|
223 |
+
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
# V1 without LLM
|
231 |
+
|
232 |
+
# import streamlit as st
|
233 |
+
# import requests
|
234 |
+
# import os # Import os to access environment variables
|
235 |
+
|
236 |
+
# # Get API token from environment variable
|
237 |
+
# API_TOKEN = os.getenv("HF_API_TOKEN") # Fetch token securely
|
238 |
+
# # Change MODEL_ID to a better model
|
239 |
+
# # MODEL_ID = "Salesforce/codet5p-770m" # CodeT5+ (Recommended)
|
240 |
+
# MODEL_ID = "bigcode/starcoder2-15b" # StarCoder2
|
241 |
+
# # MODEL_ID = "meta-llama/CodeLlama-34b-Instruct" # Code Llama
|
242 |
+
|
243 |
+
# # API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
244 |
+
|
245 |
+
# API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
246 |
+
# HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
247 |
+
|
248 |
+
# def translate_code(code_snippet, source_lang, target_lang):
|
249 |
+
# """Translate code using Hugging Face API securely."""
|
250 |
+
# prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:\n"
|
251 |
+
|
252 |
+
# response = requests.post(API_URL, headers=HEADERS, json={
|
253 |
+
# "inputs": prompt,
|
254 |
+
# "parameters": {
|
255 |
+
# "max_new_tokens": 150,
|
256 |
+
# "temperature": 0.2,
|
257 |
+
# "top_k": 50,
|
258 |
+
# "stop": ["\n\n", "#", "//", "'''"]
|
259 |
+
# }
|
260 |
+
# })
|
261 |
+
|
262 |
+
# if response.status_code == 200:
|
263 |
+
# generated_text = response.json()[0]["generated_text"]
|
264 |
+
# translated_code = generated_text.split(f"Translated {target_lang} Code:\n")[-1].strip()
|
265 |
+
# return translated_code
|
266 |
+
# else:
|
267 |
+
# return f"Error: {response.status_code}, {response.text}"
|
268 |
+
|
269 |
+
# # Streamlit UI
|
270 |
+
# st.title("🔄 Code Translator using StarCoder")
|
271 |
+
# st.write("Translate code between different programming languages using AI.")
|
272 |
+
|
273 |
+
# languages = ["Python", "Java", "C++", "C"]
|
274 |
+
|
275 |
+
# source_lang = st.selectbox("Select source language", languages)
|
276 |
+
# target_lang = st.selectbox("Select target language", languages)
|
277 |
+
# code_input = st.text_area("Enter your code here:", height=200)
|
278 |
+
|
279 |
+
# if st.button("Translate"):
|
280 |
+
# if code_input.strip():
|
281 |
+
# with st.spinner("Translating..."):
|
282 |
+
# translated_code = translate_code(code_input, source_lang, target_lang)
|
283 |
+
# st.subheader("Translated Code:")
|
284 |
+
# st.code(translated_code, language=target_lang.lower())
|
285 |
+
# else:
|
286 |
+
# st.warning("⚠️ Please enter some code before translating.")
|
java_to_python_seq2seq_model.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a68cc27b5fdf226846c3a069451dcf9a35905ec6bec9a5a8c6ed8cc94df9a30a
|
3 |
+
size 160844388
|
java_to_python_seq2seq_model.pdf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d4e74324bdec3d287aa7d57fdfcd2dec443e995cecab4813148c24ef60ce3c8
|
3 |
+
size 789260
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
torchaudio
|
4 |
+
transformers
|
5 |
+
tree_sitter
|
6 |
+
fastapi
|
7 |
+
uvicorn
|
8 |
+
sentencepiece
|
9 |
+
accelerate
|
10 |
+
streamlit
|
11 |
+
google.generativeai
|
12 |
+
tensorflow
|
translator.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
|
4 |
+
# Your Hugging Face API token (Replace 'your_token_here' with your actual token)
|
5 |
+
|
6 |
+
API_TOKEN = os.getenv("HF_API_TOKEN")
|
7 |
+
|
8 |
+
# Define model and API endpoint
|
9 |
+
MODEL_ID = "bigcode/starcoder"
|
10 |
+
API_URL = f"https://api-inference.huggingface.co/models/{MODEL_ID}"
|
11 |
+
HEADERS = {"Authorization": f"Bearer {API_TOKEN}"}
|
12 |
+
|
13 |
+
def translate_code(code_snippet, source_lang, target_lang):
|
14 |
+
"""
|
15 |
+
Translate code using Hugging Face API (No local download needed).
|
16 |
+
"""
|
17 |
+
prompt = f"Translate the following {source_lang} code to {target_lang}:\n\n{code_snippet}\n\nTranslated {target_lang} Code:"
|
18 |
+
|
19 |
+
response = requests.post(API_URL, headers=HEADERS, json={"inputs": prompt})
|
20 |
+
|
21 |
+
if response.status_code == 200:
|
22 |
+
return response.json()[0]["generated_text"]
|
23 |
+
else:
|
24 |
+
return f"Error: {response.status_code}, {response.text}"
|
25 |
+
|
26 |
+
# Example usage
|
27 |
+
source_code = """
|
28 |
+
def add(a, b):
|
29 |
+
return a + b
|
30 |
+
"""
|
31 |
+
translated_code = translate_code(source_code, "Python", "Java")
|
32 |
+
print("Translated Java Code:\n", translated_code)
|
33 |
+
|
34 |
+
|
35 |
+
|