rap-sam / app /models /heads /yoso_head.py
Haobo Yuan
bugfix
a78077d
raw
history blame contribute delete
21.3 kB
from typing import List, Tuple
import os
import torch.distributed as dist
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.models.dense_heads import AnchorFreeHead
from mmdet.structures import SampleList
from mmdet.models.dense_heads import Mask2FormerHead
import math
from mmengine.model.weight_init import trunc_normal_
import torch
from torch import nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, build_norm_layer
from mmengine.dist import get_dist_info
@MODELS.register_module()
class YOSOHead(Mask2FormerHead):
def __init__(self,
num_cls_fcs=1,
num_mask_fcs=1,
sphere_cls=False,
ov_classifier_name=None,
use_kernel_updator=False,
num_stages=3,
feat_channels=256,
out_channels=256,
num_things_classes=80,
num_stuff_classes=53,
num_classes=133,
num_queries=100,
temperature=0.1,
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=2.0,
reduction='mean',
class_weight=[1.0] * 133 + [0.1]),
loss_mask=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=5.0),
loss_dice=dict(
type='DiceLoss',
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=True,
eps=1.0,
loss_weight=5.0),
train_cfg=None,
test_cfg=None,
init_cfg=None):
super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
self.num_stages = num_stages
self.feat_channels = feat_channels
self.out_channels = out_channels
self.num_things_classes = num_things_classes
self.num_stuff_classes = num_stuff_classes
self.num_classes = num_classes
self.num_queries = num_queries
self.temperature = temperature
self.test_cfg = test_cfg
self.train_cfg = train_cfg
if train_cfg:
self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
self.sampler = TASK_UTILS.build(
self.train_cfg['sampler'], default_args=dict(context=self))
self.num_points = self.train_cfg.get('num_points', 12544)
self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
self.importance_sample_ratio = self.train_cfg.get(
'importance_sample_ratio', 0.75)
self.class_weight = loss_cls.class_weight
self.loss_cls = MODELS.build(loss_cls)
self.loss_mask = MODELS.build(loss_mask)
self.loss_dice = MODELS.build(loss_dice)
self.kernels = nn.Embedding(self.num_queries, self.feat_channels)
self.mask_heads = nn.ModuleList()
for _ in range(self.num_stages):
self.mask_heads.append(CrossAttenHead(
self.num_classes, self.feat_channels, self.num_queries,
use_kernel_updator=use_kernel_updator,
sphere_cls=sphere_cls, ov_classifier_name=ov_classifier_name,
num_cls_fcs=num_cls_fcs, num_mask_fcs=num_mask_fcs
))
def init_weights(self) -> None:
super(AnchorFreeHead, self).init_weights()
def forward(self, x: List[Tensor],
batch_data_samples: SampleList) -> Tuple[List[Tensor]]:
all_cls_scores = []
all_masks_preds = []
proposal_kernels = self.kernels.weight
object_kernels = proposal_kernels[None].repeat(x.shape[0], 1, 1)
mask_preds = torch.einsum('bnc,bchw->bnhw', object_kernels, x)
for stage in range(self.num_stages):
mask_head = self.mask_heads[stage]
cls_scores, mask_preds, iou_pred, object_kernels = mask_head(x, object_kernels, mask_preds)
cls_scores = cls_scores / self.temperature
all_cls_scores.append(cls_scores)
all_masks_preds.append(mask_preds)
return all_cls_scores, all_masks_preds
def predict(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> Tuple[Tensor]:
batch_img_metas = [
data_sample.metainfo for data_sample in batch_data_samples
]
all_cls_scores, all_mask_preds = self(x, batch_data_samples)
mask_cls_results = all_cls_scores[-1]
mask_pred_results = all_mask_preds[-1]
# upsample masks
img_shape = batch_img_metas[0]['batch_input_shape']
mask_pred_results = F.interpolate(
mask_pred_results,
size=(img_shape[0], img_shape[1]),
mode='bilinear',
align_corners=False)
return mask_cls_results, mask_pred_results
class FFN(nn.Module):
def __init__(self,
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
add_identity=True):
super(FFN, self).__init__()
self.embed_dims = embed_dims
self.feedforward_channels = feedforward_channels
self.num_fcs = num_fcs
layers = []
in_channels = embed_dims
for _ in range(num_fcs - 1):
layers.append(nn.Sequential(
nn.Linear(in_channels, feedforward_channels),
nn.ReLU(True),
nn.Dropout(0.0)))
in_channels = feedforward_channels
layers.append(nn.Linear(feedforward_channels, embed_dims))
layers.append(nn.Dropout(0.0))
self.layers = nn.Sequential(*layers)
self.add_identity = add_identity
self.dropout_layer = nn.Dropout(0.0)
def forward(self, x, identity=None):
out = self.layers(x)
if not self.add_identity:
return self.dropout_layer(out)
if identity is None:
identity = x
return identity + self.dropout_layer(out)
class DySepConvAtten(nn.Module):
def __init__(self, hidden_dim, num_proposals, conv_kernel_size_1d):
super(DySepConvAtten, self).__init__()
self.hidden_dim = hidden_dim
self.num_proposals = num_proposals
self.kernel_size = conv_kernel_size_1d
self.weight_linear = nn.Linear(self.hidden_dim, self.num_proposals + self.kernel_size)
self.norm = nn.LayerNorm(self.hidden_dim)
def forward(self, query, value):
assert query.shape == value.shape
B, N, C = query.shape
dy_conv_weight = self.weight_linear(query)
dy_depth_conv_weight = dy_conv_weight[:, :, :self.kernel_size].view(B, self.num_proposals, 1, self.kernel_size)
dy_point_conv_weight = dy_conv_weight[:, :, self.kernel_size:].view(B, self.num_proposals, self.num_proposals,
1)
res = []
value = value.unsqueeze(1)
for i in range(B):
out = F.relu(F.conv1d(input=value[i], weight=dy_depth_conv_weight[i], groups=N, padding='same'))
out = F.conv1d(input=out, weight=dy_point_conv_weight[i], padding='same')
res.append(out)
point_out = torch.cat(res, dim=0)
point_out = self.norm(point_out)
return point_out
class KernelUpdator(nn.Module):
def __init__(self,
in_channels=256,
feat_channels=64,
out_channels=None,
input_feat_shape=3,
gate_sigmoid=True,
gate_norm_act=False,
activate_out=False,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')):
super(KernelUpdator, self).__init__()
self.in_channels = in_channels
self.feat_channels = feat_channels
self.out_channels_raw = out_channels
self.gate_sigmoid = gate_sigmoid
self.gate_norm_act = gate_norm_act
self.activate_out = activate_out
if isinstance(input_feat_shape, int):
input_feat_shape = [input_feat_shape] * 2
self.input_feat_shape = input_feat_shape
self.act_cfg = act_cfg
self.norm_cfg = norm_cfg
self.out_channels = out_channels if out_channels else in_channels
self.num_params_in = self.feat_channels
self.num_params_out = self.feat_channels
self.dynamic_layer = nn.Linear(
self.in_channels, self.num_params_in + self.num_params_out)
self.input_layer = nn.Linear(self.in_channels,
self.num_params_in + self.num_params_out,
1)
self.input_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
self.update_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
if self.gate_norm_act:
self.gate_norm = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.input_norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.input_norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
self.activation = build_activation_layer(act_cfg)
self.fc_layer = nn.Linear(self.feat_channels, self.out_channels, 1)
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]
def forward(self, update_feature, input_feature):
"""
Args:
update_feature (torch.Tensor): [bs, num_proposals, in_channels]
input_feature (torch.Tensor): [bs, num_proposals, in_channels]
"""
bs, num_proposals, _ = update_feature.shape
parameters = self.dynamic_layer(update_feature)
param_in = parameters[..., :self.num_params_in]
param_out = parameters[..., -self.num_params_out:]
input_feats = self.input_layer(input_feature)
input_in = input_feats[..., :self.num_params_in]
input_out = input_feats[..., -self.num_params_out:]
gate_feats = input_in * param_in
if self.gate_norm_act:
gate_feats = self.activation(self.gate_norm(gate_feats))
input_gate = self.input_norm_in(self.input_gate(gate_feats))
update_gate = self.norm_in(self.update_gate(gate_feats))
if self.gate_sigmoid:
input_gate = input_gate.sigmoid()
update_gate = update_gate.sigmoid()
param_out = self.norm_out(param_out)
input_out = self.input_norm_out(input_out)
if self.activate_out:
param_out = self.activation(param_out)
input_out = self.activation(input_out)
# param_out has shape (batch_size, feat_channels, out_channels)
features = update_gate * param_out + input_gate * input_out
features = self.fc_layer(features)
features = self.fc_norm(features)
features = self.activation(features)
return features
class CrossAttenHead(nn.Module):
def __init__(self,
num_classes,
in_channels,
num_proposals,
frozen_head=False,
frozen_pred=False,
with_iou_pred=False,
sphere_cls=False,
ov_classifier_name=None,
num_cls_fcs=1,
num_mask_fcs=1,
conv_kernel_size_1d=3,
conv_kernel_size_2d=1,
use_kernel_updator=False):
super(CrossAttenHead, self).__init__()
self.sphere_cls = sphere_cls
self.with_iou_pred = with_iou_pred
self.frozen_head = frozen_head
self.frozen_pred = frozen_pred
self.num_cls_fcs = num_cls_fcs
self.num_mask_fcs = num_mask_fcs
self.num_classes = num_classes
self.conv_kernel_size_2d = conv_kernel_size_2d
self.hidden_dim = in_channels
self.feat_channels = in_channels
self.num_proposals = num_proposals
self.hard_mask_thr = 0.5
self.use_kernel_updator = use_kernel_updator
# assert use_kernel_updator
if use_kernel_updator:
self.kernel_update = KernelUpdator(
in_channels=256,
feat_channels=256,
out_channels=256,
input_feat_shape=3,
act_cfg=dict(type='ReLU', inplace=True),
norm_cfg=dict(type='LN')
)
else:
self.f_atten = DySepConvAtten(self.feat_channels, self.num_proposals, conv_kernel_size_1d)
self.f_dropout = nn.Dropout(0.0)
self.f_atten_norm = nn.LayerNorm(self.hidden_dim * self.conv_kernel_size_2d ** 2)
self.k_atten = DySepConvAtten(self.feat_channels, self.num_proposals, conv_kernel_size_1d)
self.k_dropout = nn.Dropout(0.0)
self.k_atten_norm = nn.LayerNorm(self.hidden_dim * self.conv_kernel_size_2d ** 2)
self.s_atten = nn.MultiheadAttention(embed_dim=self.hidden_dim *
self.conv_kernel_size_2d ** 2,
num_heads=8,
dropout=0.0)
self.s_dropout = nn.Dropout(0.0)
self.s_atten_norm = nn.LayerNorm(self.hidden_dim * self.conv_kernel_size_2d ** 2)
self.ffn = FFN(self.hidden_dim, feedforward_channels=2048, num_fcs=2)
self.ffn_norm = nn.LayerNorm(self.hidden_dim)
self.cls_fcs = nn.ModuleList()
for _ in range(self.num_cls_fcs):
self.cls_fcs.append(nn.Linear(self.hidden_dim, self.hidden_dim, bias=False))
self.cls_fcs.append(nn.LayerNorm(self.hidden_dim))
self.cls_fcs.append(nn.ReLU(True))
if sphere_cls:
rank, world_size = get_dist_info()
if ov_classifier_name is None:
_dim = 1024 # temporally hard code
cls_embed = torch.empty(self.num_classes, _dim)
torch.nn.init.orthogonal_(cls_embed)
cls_embed = cls_embed[:, None]
else:
# ov_path = os.path.join(os.path.expanduser('~/.cache/embd'), f"{ov_classifier_name}.pth")
ov_path = os.path.join('./models/', f"{ov_classifier_name}.pth")
cls_embed = torch.load(ov_path)
cls_embed_norm = cls_embed.norm(p=2, dim=-1)
assert torch.allclose(cls_embed_norm, torch.ones_like(cls_embed_norm))
# background class
_dim = cls_embed.size(2)
_prototypes = cls_embed.size(1)
# if rank == 0:
# back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cuda')
# # back_token = back_token / back_token.norm(p=2, dim=-1, keepdim=True)
# else:
# back_token = torch.empty(1, _dim, dtype=torch.float32, device='cuda')
# if world_size > 1:
# dist.broadcast(back_token, src=0)
back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cpu')
# back_token = back_token.to(device='cpu')
cls_embed = torch.cat([
cls_embed, back_token.repeat(_prototypes, 1)[None]
], dim=0)
self.register_buffer('fc_cls', cls_embed.permute(2, 0, 1).contiguous(), persistent=False)
# cls embd proj
cls_embed_dim = self.fc_cls.size(0)
self.cls_proj = nn.Sequential(
nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(inplace=True),
nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(inplace=True),
nn.Linear(self.hidden_dim, cls_embed_dim)
)
logit_scale = torch.tensor(4.6052, dtype=torch.float32)
self.register_buffer('logit_scale', logit_scale, persistent=False)
else:
self.fc_cls = nn.Linear(self.hidden_dim, self.num_classes + 1)
self.mask_fcs = nn.ModuleList()
for _ in range(self.num_mask_fcs):
self.mask_fcs.append(nn.Linear(self.hidden_dim, self.hidden_dim, bias=False))
self.mask_fcs.append(nn.LayerNorm(self.hidden_dim))
self.mask_fcs.append(nn.ReLU(True))
self.fc_mask = nn.Linear(self.hidden_dim, self.hidden_dim)
if self.with_iou_pred:
self.iou_embed = nn.Sequential(
nn.Linear(self.hidden_dim, self.hidden_dim),
nn.ReLU(inplace=True),
nn.Linear(self.hidden_dim, self.hidden_dim),
nn.ReLU(inplace=True),
nn.Linear(self.hidden_dim, 1),
)
prior_prob = 0.01
self.bias_value = -math.log((1 - prior_prob) / prior_prob)
self.apply(self._init_weights)
if not sphere_cls:
nn.init.constant_(self.fc_cls.bias, self.bias_value)
if self.frozen_head:
self._frozen_head()
if self.frozen_pred:
self._frozen_pred()
def _init_weights(self, m):
# print("init weights")
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def _frozen_head(self):
for n, p in self.kernel_update.named_parameters():
p.requires_grad = False
for n, p in self.s_atten.named_parameters():
p.requires_grad = False
for n, p in self.s_dropout.named_parameters():
p.requires_grad = False
for n, p in self.s_atten_norm.named_parameters():
p.requires_grad = False
for n, p in self.ffn.named_parameters():
p.requires_grad = False
for n, p in self.ffn_norm.named_parameters():
p.requires_grad = False
def _frozen_pred(self):
# frozen cls_fcs, fc_cls, mask_fcs, fc_mask
for n, p in self.cls_fcs.named_parameters():
p.requires_grad = False
for n, p in self.fc_cls.named_parameters():
p.requires_grad = False
for n, p in self.mask_fcs.named_parameters():
p.requires_grad = False
for n, p in self.fc_mask.named_parameters():
p.requires_grad = False
def train(self, mode):
super().train(mode)
if self.frozen_head:
self.kernel_update.eval()
self.s_atten.eval()
self.s_dropout.eval()
self.s_atten_norm.eval()
self.ffn.eval()
self.ffn_norm.eval()
if self.frozen_pred:
self.cls_fcs.eval()
self.fc_cls.eval()
self.mask_fcs.eval()
self.fc_mask.eval()
def forward(self, features, proposal_kernels, mask_preds, self_attn_mask=None):
B, C, H, W = features.shape
soft_sigmoid_masks = mask_preds.sigmoid()
nonzero_inds = soft_sigmoid_masks > self.hard_mask_thr
hard_sigmoid_masks = nonzero_inds.float()
# [B, N, C]
f = torch.einsum('bnhw,bchw->bnc', hard_sigmoid_masks, features)
# [B, N, C, K, K] -> [B, N, C * K * K]
num_proposals = proposal_kernels.shape[1]
k = proposal_kernels.view(B, num_proposals, -1)
# ----
if self.use_kernel_updator:
k = self.kernel_update(f, k)
else:
f_tmp = self.f_atten(k, f)
f = f + self.f_dropout(f_tmp)
f = self.f_atten_norm(f)
f_tmp = self.k_atten(k, f)
f = f + self.k_dropout(f_tmp)
k = self.k_atten_norm(f)
# [N, B, C]
k = k.permute(1, 0, 2)
k_tmp = self.s_atten(query=k, key=k, value=k, attn_mask=self_attn_mask)[0]
k = k + self.s_dropout(k_tmp)
k = self.s_atten_norm(k.permute(1, 0, 2))
obj_feat = self.ffn_norm(self.ffn(k))
cls_feat = obj_feat
mask_feat = obj_feat
for cls_layer in self.cls_fcs:
cls_feat = cls_layer(cls_feat)
if self.sphere_cls:
cls_embd = self.cls_proj(cls_feat) # FIXME Too much cls linear (cls_fcs + cls_proj)
cls_score = torch.einsum('bnc,ckp->bnkp', F.normalize(cls_embd, dim=-1), self.fc_cls)
cls_score = cls_score.max(-1).values
cls_score = self.logit_scale.exp() * cls_score
else:
cls_score = self.fc_cls(cls_feat)
for reg_layer in self.mask_fcs:
mask_feat = reg_layer(mask_feat)
# [B, N, K * K, C] -> [B, N, C]
mask_kernels = self.fc_mask(mask_feat)
new_mask_preds = torch.einsum("bqc,bchw->bqhw", mask_kernels, features)
if self.with_iou_pred:
iou_pred = self.iou_embed(mask_feat)
iou_pred = iou_pred
else:
iou_pred = None
return cls_score, new_mask_preds, iou_pred, obj_feat