File size: 21,304 Bytes
502989e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16d167b
 
502989e
 
 
 
 
 
 
c7fd587
 
 
 
 
 
 
a78077d
c7fd587
502989e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
from typing import List, Tuple
import os
import torch.distributed as dist
from torch import Tensor
from mmdet.registry import MODELS, TASK_UTILS
from mmdet.models.dense_heads import AnchorFreeHead
from mmdet.structures import SampleList
from mmdet.models.dense_heads import Mask2FormerHead
import math
from mmengine.model.weight_init import trunc_normal_
import torch
from torch import nn
import torch.nn.functional as F
from mmcv.cnn import build_activation_layer, build_norm_layer

from mmengine.dist import get_dist_info


@MODELS.register_module()
class YOSOHead(Mask2FormerHead):
    def __init__(self,
                 num_cls_fcs=1,
                 num_mask_fcs=1,
                 sphere_cls=False,
                 ov_classifier_name=None,
                 use_kernel_updator=False,
                 num_stages=3,
                 feat_channels=256,
                 out_channels=256,
                 num_things_classes=80,
                 num_stuff_classes=53,
                 num_classes=133,
                 num_queries=100,
                 temperature=0.1,
                 loss_cls=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=False,
                     loss_weight=2.0,
                     reduction='mean',
                     class_weight=[1.0] * 133 + [0.1]),
                 loss_mask=dict(
                     type='CrossEntropyLoss',
                     use_sigmoid=True,
                     reduction='mean',
                     loss_weight=5.0),
                 loss_dice=dict(
                     type='DiceLoss',
                     use_sigmoid=True,
                     activate=True,
                     reduction='mean',
                     naive_dice=True,
                     eps=1.0,
                     loss_weight=5.0),
                 train_cfg=None,
                 test_cfg=None,
                 init_cfg=None):
        super(AnchorFreeHead, self).__init__(init_cfg=init_cfg)
        self.num_stages = num_stages
        self.feat_channels = feat_channels
        self.out_channels = out_channels
        self.num_things_classes = num_things_classes
        self.num_stuff_classes = num_stuff_classes
        self.num_classes = num_classes
        self.num_queries = num_queries
        self.temperature = temperature

        self.test_cfg = test_cfg
        self.train_cfg = train_cfg
        if train_cfg:
            self.assigner = TASK_UTILS.build(self.train_cfg['assigner'])
            self.sampler = TASK_UTILS.build(
                self.train_cfg['sampler'], default_args=dict(context=self))
            self.num_points = self.train_cfg.get('num_points', 12544)
            self.oversample_ratio = self.train_cfg.get('oversample_ratio', 3.0)
            self.importance_sample_ratio = self.train_cfg.get(
                'importance_sample_ratio', 0.75)

        self.class_weight = loss_cls.class_weight
        self.loss_cls = MODELS.build(loss_cls)
        self.loss_mask = MODELS.build(loss_mask)
        self.loss_dice = MODELS.build(loss_dice)

        self.kernels = nn.Embedding(self.num_queries, self.feat_channels)

        self.mask_heads = nn.ModuleList()
        for _ in range(self.num_stages):
            self.mask_heads.append(CrossAttenHead(
                self.num_classes, self.feat_channels, self.num_queries,
                use_kernel_updator=use_kernel_updator,
                sphere_cls=sphere_cls, ov_classifier_name=ov_classifier_name,
                num_cls_fcs=num_cls_fcs, num_mask_fcs=num_mask_fcs
            ))

    def init_weights(self) -> None:
        super(AnchorFreeHead, self).init_weights()

    def forward(self, x: List[Tensor],
                batch_data_samples: SampleList) -> Tuple[List[Tensor]]:
        all_cls_scores = []
        all_masks_preds = []
        proposal_kernels = self.kernels.weight
        object_kernels = proposal_kernels[None].repeat(x.shape[0], 1, 1)
        mask_preds = torch.einsum('bnc,bchw->bnhw', object_kernels, x)

        for stage in range(self.num_stages):
            mask_head = self.mask_heads[stage]
            cls_scores, mask_preds, iou_pred, object_kernels = mask_head(x, object_kernels, mask_preds)
            cls_scores = cls_scores / self.temperature

            all_cls_scores.append(cls_scores)
            all_masks_preds.append(mask_preds)

        return all_cls_scores, all_masks_preds

    def predict(self, x: Tuple[Tensor], batch_data_samples: SampleList) -> Tuple[Tensor]:
        batch_img_metas = [
            data_sample.metainfo for data_sample in batch_data_samples
        ]
        all_cls_scores, all_mask_preds = self(x, batch_data_samples)
        mask_cls_results = all_cls_scores[-1]
        mask_pred_results = all_mask_preds[-1]

        # upsample masks
        img_shape = batch_img_metas[0]['batch_input_shape']
        mask_pred_results = F.interpolate(
            mask_pred_results,
            size=(img_shape[0], img_shape[1]),
            mode='bilinear',
            align_corners=False)

        return mask_cls_results, mask_pred_results


class FFN(nn.Module):

    def __init__(self,
                 embed_dims=256,
                 feedforward_channels=1024,
                 num_fcs=2,
                 add_identity=True):
        super(FFN, self).__init__()
        self.embed_dims = embed_dims
        self.feedforward_channels = feedforward_channels
        self.num_fcs = num_fcs

        layers = []
        in_channels = embed_dims
        for _ in range(num_fcs - 1):
            layers.append(nn.Sequential(
                nn.Linear(in_channels, feedforward_channels),
                nn.ReLU(True),
                nn.Dropout(0.0)))
            in_channels = feedforward_channels
        layers.append(nn.Linear(feedforward_channels, embed_dims))
        layers.append(nn.Dropout(0.0))
        self.layers = nn.Sequential(*layers)
        self.add_identity = add_identity
        self.dropout_layer = nn.Dropout(0.0)

    def forward(self, x, identity=None):
        out = self.layers(x)
        if not self.add_identity:
            return self.dropout_layer(out)
        if identity is None:
            identity = x
        return identity + self.dropout_layer(out)


class DySepConvAtten(nn.Module):
    def __init__(self, hidden_dim, num_proposals, conv_kernel_size_1d):
        super(DySepConvAtten, self).__init__()
        self.hidden_dim = hidden_dim
        self.num_proposals = num_proposals
        self.kernel_size = conv_kernel_size_1d

        self.weight_linear = nn.Linear(self.hidden_dim, self.num_proposals + self.kernel_size)
        self.norm = nn.LayerNorm(self.hidden_dim)

    def forward(self, query, value):
        assert query.shape == value.shape
        B, N, C = query.shape

        dy_conv_weight = self.weight_linear(query)
        dy_depth_conv_weight = dy_conv_weight[:, :, :self.kernel_size].view(B, self.num_proposals, 1, self.kernel_size)
        dy_point_conv_weight = dy_conv_weight[:, :, self.kernel_size:].view(B, self.num_proposals, self.num_proposals,
                                                                            1)

        res = []
        value = value.unsqueeze(1)
        for i in range(B):
            out = F.relu(F.conv1d(input=value[i], weight=dy_depth_conv_weight[i], groups=N, padding='same'))
            out = F.conv1d(input=out, weight=dy_point_conv_weight[i], padding='same')
            res.append(out)

        point_out = torch.cat(res, dim=0)
        point_out = self.norm(point_out)
        return point_out


class KernelUpdator(nn.Module):

    def __init__(self,
                 in_channels=256,
                 feat_channels=64,
                 out_channels=None,
                 input_feat_shape=3,
                 gate_sigmoid=True,
                 gate_norm_act=False,
                 activate_out=False,
                 act_cfg=dict(type='ReLU', inplace=True),
                 norm_cfg=dict(type='LN')):
        super(KernelUpdator, self).__init__()
        self.in_channels = in_channels
        self.feat_channels = feat_channels
        self.out_channels_raw = out_channels
        self.gate_sigmoid = gate_sigmoid
        self.gate_norm_act = gate_norm_act
        self.activate_out = activate_out
        if isinstance(input_feat_shape, int):
            input_feat_shape = [input_feat_shape] * 2
        self.input_feat_shape = input_feat_shape
        self.act_cfg = act_cfg
        self.norm_cfg = norm_cfg
        self.out_channels = out_channels if out_channels else in_channels

        self.num_params_in = self.feat_channels
        self.num_params_out = self.feat_channels
        self.dynamic_layer = nn.Linear(
            self.in_channels, self.num_params_in + self.num_params_out)
        self.input_layer = nn.Linear(self.in_channels,
                                     self.num_params_in + self.num_params_out,
                                     1)
        self.input_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
        self.update_gate = nn.Linear(self.in_channels, self.feat_channels, 1)
        if self.gate_norm_act:
            self.gate_norm = build_norm_layer(norm_cfg, self.feat_channels)[1]

        self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
        self.norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]
        self.input_norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1]
        self.input_norm_out = build_norm_layer(norm_cfg, self.feat_channels)[1]

        self.activation = build_activation_layer(act_cfg)

        self.fc_layer = nn.Linear(self.feat_channels, self.out_channels, 1)
        self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1]

    def forward(self, update_feature, input_feature):
        """
        Args:
            update_feature (torch.Tensor): [bs, num_proposals, in_channels]
            input_feature (torch.Tensor): [bs, num_proposals, in_channels]
        """
        bs, num_proposals, _ = update_feature.shape

        parameters = self.dynamic_layer(update_feature)
        param_in = parameters[..., :self.num_params_in]
        param_out = parameters[..., -self.num_params_out:]

        input_feats = self.input_layer(input_feature)
        input_in = input_feats[..., :self.num_params_in]
        input_out = input_feats[..., -self.num_params_out:]

        gate_feats = input_in * param_in
        if self.gate_norm_act:
            gate_feats = self.activation(self.gate_norm(gate_feats))

        input_gate = self.input_norm_in(self.input_gate(gate_feats))
        update_gate = self.norm_in(self.update_gate(gate_feats))
        if self.gate_sigmoid:
            input_gate = input_gate.sigmoid()
            update_gate = update_gate.sigmoid()
        param_out = self.norm_out(param_out)
        input_out = self.input_norm_out(input_out)

        if self.activate_out:
            param_out = self.activation(param_out)
            input_out = self.activation(input_out)

        # param_out has shape (batch_size, feat_channels, out_channels)
        features = update_gate * param_out + input_gate * input_out

        features = self.fc_layer(features)
        features = self.fc_norm(features)
        features = self.activation(features)

        return features


class CrossAttenHead(nn.Module):

    def __init__(self,
                 num_classes,
                 in_channels,
                 num_proposals,
                 frozen_head=False,
                 frozen_pred=False,
                 with_iou_pred=False,
                 sphere_cls=False,
                 ov_classifier_name=None,
                 num_cls_fcs=1,
                 num_mask_fcs=1,
                 conv_kernel_size_1d=3,
                 conv_kernel_size_2d=1,
                 use_kernel_updator=False):
        super(CrossAttenHead, self).__init__()
        self.sphere_cls = sphere_cls
        self.with_iou_pred = with_iou_pred
        self.frozen_head = frozen_head
        self.frozen_pred = frozen_pred
        self.num_cls_fcs = num_cls_fcs
        self.num_mask_fcs = num_mask_fcs
        self.num_classes = num_classes
        self.conv_kernel_size_2d = conv_kernel_size_2d

        self.hidden_dim = in_channels
        self.feat_channels = in_channels
        self.num_proposals = num_proposals
        self.hard_mask_thr = 0.5
        self.use_kernel_updator = use_kernel_updator
        # assert use_kernel_updator
        if use_kernel_updator:
            self.kernel_update = KernelUpdator(
                in_channels=256,
                feat_channels=256,
                out_channels=256,
                input_feat_shape=3,
                act_cfg=dict(type='ReLU', inplace=True),
                norm_cfg=dict(type='LN')
            )
        else:
            self.f_atten = DySepConvAtten(self.feat_channels, self.num_proposals, conv_kernel_size_1d)
            self.f_dropout = nn.Dropout(0.0)
            self.f_atten_norm = nn.LayerNorm(self.hidden_dim * self.conv_kernel_size_2d ** 2)
            self.k_atten = DySepConvAtten(self.feat_channels, self.num_proposals, conv_kernel_size_1d)
            self.k_dropout = nn.Dropout(0.0)
            self.k_atten_norm = nn.LayerNorm(self.hidden_dim * self.conv_kernel_size_2d ** 2)

        self.s_atten = nn.MultiheadAttention(embed_dim=self.hidden_dim *
                                                       self.conv_kernel_size_2d ** 2,
                                             num_heads=8,
                                             dropout=0.0)
        self.s_dropout = nn.Dropout(0.0)
        self.s_atten_norm = nn.LayerNorm(self.hidden_dim * self.conv_kernel_size_2d ** 2)

        self.ffn = FFN(self.hidden_dim, feedforward_channels=2048, num_fcs=2)
        self.ffn_norm = nn.LayerNorm(self.hidden_dim)

        self.cls_fcs = nn.ModuleList()
        for _ in range(self.num_cls_fcs):
            self.cls_fcs.append(nn.Linear(self.hidden_dim, self.hidden_dim, bias=False))
            self.cls_fcs.append(nn.LayerNorm(self.hidden_dim))
            self.cls_fcs.append(nn.ReLU(True))

        if sphere_cls:
            rank, world_size = get_dist_info()
            if ov_classifier_name is None:
                _dim = 1024  # temporally hard code
                cls_embed = torch.empty(self.num_classes, _dim)
                torch.nn.init.orthogonal_(cls_embed)
                cls_embed = cls_embed[:, None]
            else:
                # ov_path = os.path.join(os.path.expanduser('~/.cache/embd'), f"{ov_classifier_name}.pth")
                ov_path = os.path.join('./models/', f"{ov_classifier_name}.pth")
                cls_embed = torch.load(ov_path)
                cls_embed_norm = cls_embed.norm(p=2, dim=-1)
                assert torch.allclose(cls_embed_norm, torch.ones_like(cls_embed_norm))

            # background class
            _dim = cls_embed.size(2)
            _prototypes = cls_embed.size(1)
            # if rank == 0:
            #     back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cuda')
            #     # back_token = back_token / back_token.norm(p=2, dim=-1, keepdim=True)
            # else:
            #     back_token = torch.empty(1, _dim, dtype=torch.float32, device='cuda')
            # if world_size > 1:
            #     dist.broadcast(back_token, src=0)
            back_token = torch.zeros(1, _dim, dtype=torch.float32, device='cpu')
            # back_token = back_token.to(device='cpu')
            cls_embed = torch.cat([
                cls_embed, back_token.repeat(_prototypes, 1)[None]
            ], dim=0)
            self.register_buffer('fc_cls', cls_embed.permute(2, 0, 1).contiguous(), persistent=False)

            # cls embd proj
            cls_embed_dim = self.fc_cls.size(0)
            self.cls_proj = nn.Sequential(
                nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(inplace=True),
                nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(inplace=True),
                nn.Linear(self.hidden_dim, cls_embed_dim)
            )

            logit_scale = torch.tensor(4.6052, dtype=torch.float32)
            self.register_buffer('logit_scale', logit_scale, persistent=False)
        else:
            self.fc_cls = nn.Linear(self.hidden_dim, self.num_classes + 1)

        self.mask_fcs = nn.ModuleList()
        for _ in range(self.num_mask_fcs):
            self.mask_fcs.append(nn.Linear(self.hidden_dim, self.hidden_dim, bias=False))
            self.mask_fcs.append(nn.LayerNorm(self.hidden_dim))
            self.mask_fcs.append(nn.ReLU(True))
        self.fc_mask = nn.Linear(self.hidden_dim, self.hidden_dim)

        if self.with_iou_pred:
            self.iou_embed = nn.Sequential(
                nn.Linear(self.hidden_dim, self.hidden_dim),
                nn.ReLU(inplace=True),
                nn.Linear(self.hidden_dim, self.hidden_dim),
                nn.ReLU(inplace=True),
                nn.Linear(self.hidden_dim, 1),
            )
        prior_prob = 0.01
        self.bias_value = -math.log((1 - prior_prob) / prior_prob)

        self.apply(self._init_weights)
        if not sphere_cls:
            nn.init.constant_(self.fc_cls.bias, self.bias_value)

        if self.frozen_head:
            self._frozen_head()
        if self.frozen_pred:
            self._frozen_pred()

    def _init_weights(self, m):
        # print("init weights")
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def _frozen_head(self):
        for n, p in self.kernel_update.named_parameters():
            p.requires_grad = False
        for n, p in self.s_atten.named_parameters():
            p.requires_grad = False
        for n, p in self.s_dropout.named_parameters():
            p.requires_grad = False
        for n, p in self.s_atten_norm.named_parameters():
            p.requires_grad = False
        for n, p in self.ffn.named_parameters():
            p.requires_grad = False
        for n, p in self.ffn_norm.named_parameters():
            p.requires_grad = False

    def _frozen_pred(self):
        # frozen cls_fcs, fc_cls, mask_fcs, fc_mask
        for n, p in self.cls_fcs.named_parameters():
            p.requires_grad = False
        for n, p in self.fc_cls.named_parameters():
            p.requires_grad = False
        for n, p in self.mask_fcs.named_parameters():
            p.requires_grad = False
        for n, p in self.fc_mask.named_parameters():
            p.requires_grad = False

    def train(self, mode):
        super().train(mode)
        if self.frozen_head:
            self.kernel_update.eval()
            self.s_atten.eval()
            self.s_dropout.eval()
            self.s_atten_norm.eval()
            self.ffn.eval()
            self.ffn_norm.eval()
        if self.frozen_pred:
            self.cls_fcs.eval()
            self.fc_cls.eval()
            self.mask_fcs.eval()
            self.fc_mask.eval()

    def forward(self, features, proposal_kernels, mask_preds, self_attn_mask=None):
        B, C, H, W = features.shape

        soft_sigmoid_masks = mask_preds.sigmoid()
        nonzero_inds = soft_sigmoid_masks > self.hard_mask_thr
        hard_sigmoid_masks = nonzero_inds.float()

        # [B, N, C]
        f = torch.einsum('bnhw,bchw->bnc', hard_sigmoid_masks, features)
        # [B, N, C, K, K] -> [B, N, C * K * K]
        num_proposals = proposal_kernels.shape[1]
        k = proposal_kernels.view(B, num_proposals, -1)

        # ----
        if self.use_kernel_updator:
            k = self.kernel_update(f, k)
        else:
            f_tmp = self.f_atten(k, f)
            f = f + self.f_dropout(f_tmp)
            f = self.f_atten_norm(f)

            f_tmp = self.k_atten(k, f)
            f = f + self.k_dropout(f_tmp)
            k = self.k_atten_norm(f)

        # [N, B, C]
        k = k.permute(1, 0, 2)

        k_tmp = self.s_atten(query=k, key=k, value=k, attn_mask=self_attn_mask)[0]
        k = k + self.s_dropout(k_tmp)
        k = self.s_atten_norm(k.permute(1, 0, 2))

        obj_feat = self.ffn_norm(self.ffn(k))

        cls_feat = obj_feat
        mask_feat = obj_feat

        for cls_layer in self.cls_fcs:
            cls_feat = cls_layer(cls_feat)

        if self.sphere_cls:
            cls_embd = self.cls_proj(cls_feat)  # FIXME Too much cls linear (cls_fcs + cls_proj)
            cls_score = torch.einsum('bnc,ckp->bnkp', F.normalize(cls_embd, dim=-1), self.fc_cls)
            cls_score = cls_score.max(-1).values
            cls_score = self.logit_scale.exp() * cls_score
        else:
            cls_score = self.fc_cls(cls_feat)
        for reg_layer in self.mask_fcs:
            mask_feat = reg_layer(mask_feat)
        # [B, N, K * K, C] -> [B, N, C]
        mask_kernels = self.fc_mask(mask_feat)

        new_mask_preds = torch.einsum("bqc,bchw->bqhw", mask_kernels, features)
        if self.with_iou_pred:
            iou_pred = self.iou_embed(mask_feat)
            iou_pred = iou_pred
        else:
            iou_pred = None
        return cls_score, new_mask_preds, iou_pred, obj_feat