Spaces:
Runtime error
Runtime error
# Copyright (C) 2022-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Pre-training CroCo | |
# -------------------------------------------------------- | |
# References: | |
# MAE: https://github.com/facebookresearch/mae | |
# DeiT: https://github.com/facebookresearch/deit | |
# BEiT: https://github.com/microsoft/unilm/tree/master/beit | |
# -------------------------------------------------------- | |
import argparse | |
import datetime | |
import json | |
import math | |
import os | |
import sys | |
import time | |
from pathlib import Path | |
from typing import Iterable | |
import numpy as np | |
import torch | |
import torch.backends.cudnn as cudnn | |
import torch.distributed as dist | |
import torchvision.datasets as datasets | |
import torchvision.transforms as transforms | |
import utils.misc as misc | |
from datasets.pairs_dataset import PairsDataset | |
from models.criterion import MaskedMSE | |
from models.croco import CroCoNet | |
from torch.utils.tensorboard import SummaryWriter | |
from utils.misc import NativeScalerWithGradNormCount as NativeScaler | |
def get_args_parser(): | |
parser = argparse.ArgumentParser("CroCo pre-training", add_help=False) | |
# model and criterion | |
parser.add_argument( | |
"--model", | |
default="CroCoNet()", | |
type=str, | |
help="string containing the model to build", | |
) | |
parser.add_argument( | |
"--norm_pix_loss", | |
default=1, | |
choices=[0, 1], | |
help="apply per-patch mean/std normalization before applying the loss", | |
) | |
# dataset | |
parser.add_argument( | |
"--dataset", default="habitat_release", type=str, help="training set" | |
) | |
parser.add_argument( | |
"--transforms", default="crop224+acolor", type=str, help="transforms to apply" | |
) # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful | |
# training | |
parser.add_argument("--seed", default=0, type=int, help="Random seed") | |
parser.add_argument( | |
"--batch_size", | |
default=64, | |
type=int, | |
help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus", | |
) | |
parser.add_argument( | |
"--epochs", | |
default=800, | |
type=int, | |
help="Maximum number of epochs for the scheduler", | |
) | |
parser.add_argument( | |
"--max_epoch", default=400, type=int, help="Stop training at this epoch" | |
) | |
parser.add_argument( | |
"--accum_iter", | |
default=1, | |
type=int, | |
help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)", | |
) | |
parser.add_argument( | |
"--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)" | |
) | |
parser.add_argument( | |
"--lr", | |
type=float, | |
default=None, | |
metavar="LR", | |
help="learning rate (absolute lr)", | |
) | |
parser.add_argument( | |
"--blr", | |
type=float, | |
default=1.5e-4, | |
metavar="LR", | |
help="base learning rate: absolute_lr = base_lr * total_batch_size / 256", | |
) | |
parser.add_argument( | |
"--min_lr", | |
type=float, | |
default=0.0, | |
metavar="LR", | |
help="lower lr bound for cyclic schedulers that hit 0", | |
) | |
parser.add_argument( | |
"--warmup_epochs", type=int, default=40, metavar="N", help="epochs to warmup LR" | |
) | |
parser.add_argument( | |
"--amp", | |
type=int, | |
default=1, | |
choices=[0, 1], | |
help="Use Automatic Mixed Precision for pretraining", | |
) | |
# others | |
parser.add_argument("--num_workers", default=8, type=int) | |
parser.add_argument( | |
"--world_size", default=1, type=int, help="number of distributed processes" | |
) | |
parser.add_argument("--local_rank", default=-1, type=int) | |
parser.add_argument( | |
"--dist_url", default="env://", help="url used to set up distributed training" | |
) | |
parser.add_argument( | |
"--save_freq", | |
default=1, | |
type=int, | |
help="frequence (number of epochs) to save checkpoint in checkpoint-last.pth", | |
) | |
parser.add_argument( | |
"--keep_freq", | |
default=20, | |
type=int, | |
help="frequence (number of epochs) to save checkpoint in checkpoint-%d.pth", | |
) | |
parser.add_argument( | |
"--print_freq", | |
default=20, | |
type=int, | |
help="frequence (number of iterations) to print infos while training", | |
) | |
# paths | |
parser.add_argument( | |
"--output_dir", | |
default="./output/", | |
type=str, | |
help="path where to save the output", | |
) | |
parser.add_argument( | |
"--data_dir", default="./data/", type=str, help="path where data are stored" | |
) | |
return parser | |
def main(args): | |
misc.init_distributed_mode(args) | |
global_rank = misc.get_rank() | |
world_size = misc.get_world_size() | |
print("output_dir: " + args.output_dir) | |
if args.output_dir: | |
Path(args.output_dir).mkdir(parents=True, exist_ok=True) | |
# auto resume | |
last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth") | |
args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None | |
print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__)))) | |
print("{}".format(args).replace(", ", ",\n")) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
device = torch.device(device) | |
# fix the seed | |
seed = args.seed + misc.get_rank() | |
torch.manual_seed(seed) | |
np.random.seed(seed) | |
cudnn.benchmark = True | |
## training dataset and loader | |
print( | |
"Building dataset for {:s} with transforms {:s}".format( | |
args.dataset, args.transforms | |
) | |
) | |
dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir) | |
if world_size > 1: | |
sampler_train = torch.utils.data.DistributedSampler( | |
dataset, num_replicas=world_size, rank=global_rank, shuffle=True | |
) | |
print("Sampler_train = %s" % str(sampler_train)) | |
else: | |
sampler_train = torch.utils.data.RandomSampler(dataset) | |
data_loader_train = torch.utils.data.DataLoader( | |
dataset, | |
sampler=sampler_train, | |
batch_size=args.batch_size, | |
num_workers=args.num_workers, | |
pin_memory=True, | |
drop_last=True, | |
) | |
## model | |
print("Loading model: {:s}".format(args.model)) | |
model = eval(args.model) | |
print( | |
"Loading criterion: MaskedMSE(norm_pix_loss={:s})".format( | |
str(bool(args.norm_pix_loss)) | |
) | |
) | |
criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss)) | |
model.to(device) | |
model_without_ddp = model | |
print("Model = %s" % str(model_without_ddp)) | |
eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size() | |
if args.lr is None: # only base_lr is specified | |
args.lr = args.blr * eff_batch_size / 256 | |
print("base lr: %.2e" % (args.lr * 256 / eff_batch_size)) | |
print("actual lr: %.2e" % args.lr) | |
print("accumulate grad iterations: %d" % args.accum_iter) | |
print("effective batch size: %d" % eff_batch_size) | |
if args.distributed: | |
model = torch.nn.parallel.DistributedDataParallel( | |
model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True | |
) | |
model_without_ddp = model.module | |
param_groups = misc.get_parameter_groups( | |
model_without_ddp, args.weight_decay | |
) # following timm: set wd as 0 for bias and norm layers | |
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95)) | |
print(optimizer) | |
loss_scaler = NativeScaler() | |
misc.load_model( | |
args=args, | |
model_without_ddp=model_without_ddp, | |
optimizer=optimizer, | |
loss_scaler=loss_scaler, | |
) | |
if global_rank == 0 and args.output_dir is not None: | |
log_writer = SummaryWriter(log_dir=args.output_dir) | |
else: | |
log_writer = None | |
print(f"Start training until {args.max_epoch} epochs") | |
start_time = time.time() | |
for epoch in range(args.start_epoch, args.max_epoch): | |
if world_size > 1: | |
data_loader_train.sampler.set_epoch(epoch) | |
train_stats = train_one_epoch( | |
model, | |
criterion, | |
data_loader_train, | |
optimizer, | |
device, | |
epoch, | |
loss_scaler, | |
log_writer=log_writer, | |
args=args, | |
) | |
if args.output_dir and epoch % args.save_freq == 0: | |
misc.save_model( | |
args=args, | |
model_without_ddp=model_without_ddp, | |
optimizer=optimizer, | |
loss_scaler=loss_scaler, | |
epoch=epoch, | |
fname="last", | |
) | |
if ( | |
args.output_dir | |
and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch) | |
and (epoch > 0 or args.max_epoch == 1) | |
): | |
misc.save_model( | |
args=args, | |
model_without_ddp=model_without_ddp, | |
optimizer=optimizer, | |
loss_scaler=loss_scaler, | |
epoch=epoch, | |
) | |
log_stats = { | |
**{f"train_{k}": v for k, v in train_stats.items()}, | |
"epoch": epoch, | |
} | |
if args.output_dir and misc.is_main_process(): | |
if log_writer is not None: | |
log_writer.flush() | |
with open( | |
os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8" | |
) as f: | |
f.write(json.dumps(log_stats) + "\n") | |
total_time = time.time() - start_time | |
total_time_str = str(datetime.timedelta(seconds=int(total_time))) | |
print("Training time {}".format(total_time_str)) | |
def train_one_epoch( | |
model: torch.nn.Module, | |
criterion: torch.nn.Module, | |
data_loader: Iterable, | |
optimizer: torch.optim.Optimizer, | |
device: torch.device, | |
epoch: int, | |
loss_scaler, | |
log_writer=None, | |
args=None, | |
): | |
model.train(True) | |
metric_logger = misc.MetricLogger(delimiter=" ") | |
metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}")) | |
header = "Epoch: [{}]".format(epoch) | |
accum_iter = args.accum_iter | |
optimizer.zero_grad() | |
if log_writer is not None: | |
print("log_dir: {}".format(log_writer.log_dir)) | |
for data_iter_step, (image1, image2) in enumerate( | |
metric_logger.log_every(data_loader, args.print_freq, header) | |
): | |
# we use a per iteration lr scheduler | |
if data_iter_step % accum_iter == 0: | |
misc.adjust_learning_rate( | |
optimizer, data_iter_step / len(data_loader) + epoch, args | |
) | |
image1 = image1.to(device, non_blocking=True) | |
image2 = image2.to(device, non_blocking=True) | |
with torch.cuda.amp.autocast(enabled=bool(args.amp)): | |
out, mask, target = model(image1, image2) | |
loss = criterion(out, mask, target) | |
loss_value = loss.item() | |
if not math.isfinite(loss_value): | |
print("Loss is {}, stopping training".format(loss_value)) | |
sys.exit(1) | |
loss /= accum_iter | |
loss_scaler( | |
loss, | |
optimizer, | |
parameters=model.parameters(), | |
update_grad=(data_iter_step + 1) % accum_iter == 0, | |
) | |
if (data_iter_step + 1) % accum_iter == 0: | |
optimizer.zero_grad() | |
torch.cuda.synchronize() | |
metric_logger.update(loss=loss_value) | |
lr = optimizer.param_groups[0]["lr"] | |
metric_logger.update(lr=lr) | |
loss_value_reduce = misc.all_reduce_mean(loss_value) | |
if ( | |
log_writer is not None | |
and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0 | |
): | |
# x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes | |
epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000) | |
log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x) | |
log_writer.add_scalar("lr", lr, epoch_1000x) | |
# gather the stats from all processes | |
metric_logger.synchronize_between_processes() | |
print("Averaged stats:", metric_logger) | |
return {k: meter.global_avg for k, meter in metric_logger.meters.items()} | |
if __name__ == "__main__": | |
args = get_args_parser() | |
args = args.parse_args() | |
main(args) | |