File size: 12,528 Bytes
1bb1365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# Copyright (C) 2022-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Pre-training CroCo
# --------------------------------------------------------
# References:
# MAE: https://github.com/facebookresearch/mae
# DeiT: https://github.com/facebookresearch/deit
# BEiT: https://github.com/microsoft/unilm/tree/master/beit
# --------------------------------------------------------
import argparse
import datetime
import json
import math
import os
import sys
import time
from pathlib import Path
from typing import Iterable

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torchvision.datasets as datasets
import torchvision.transforms as transforms
import utils.misc as misc
from datasets.pairs_dataset import PairsDataset
from models.criterion import MaskedMSE
from models.croco import CroCoNet
from torch.utils.tensorboard import SummaryWriter
from utils.misc import NativeScalerWithGradNormCount as NativeScaler


def get_args_parser():
    parser = argparse.ArgumentParser("CroCo pre-training", add_help=False)
    # model and criterion
    parser.add_argument(
        "--model",
        default="CroCoNet()",
        type=str,
        help="string containing the model to build",
    )
    parser.add_argument(
        "--norm_pix_loss",
        default=1,
        choices=[0, 1],
        help="apply per-patch mean/std normalization before applying the loss",
    )
    # dataset
    parser.add_argument(
        "--dataset", default="habitat_release", type=str, help="training set"
    )
    parser.add_argument(
        "--transforms", default="crop224+acolor", type=str, help="transforms to apply"
    )  # in the paper, we also use some homography and rotation, but find later that they were not useful or even harmful
    # training
    parser.add_argument("--seed", default=0, type=int, help="Random seed")
    parser.add_argument(
        "--batch_size",
        default=64,
        type=int,
        help="Batch size per GPU (effective batch size is batch_size * accum_iter * # gpus",
    )
    parser.add_argument(
        "--epochs",
        default=800,
        type=int,
        help="Maximum number of epochs for the scheduler",
    )
    parser.add_argument(
        "--max_epoch", default=400, type=int, help="Stop training at this epoch"
    )
    parser.add_argument(
        "--accum_iter",
        default=1,
        type=int,
        help="Accumulate gradient iterations (for increasing the effective batch size under memory constraints)",
    )
    parser.add_argument(
        "--weight_decay", type=float, default=0.05, help="weight decay (default: 0.05)"
    )
    parser.add_argument(
        "--lr",
        type=float,
        default=None,
        metavar="LR",
        help="learning rate (absolute lr)",
    )
    parser.add_argument(
        "--blr",
        type=float,
        default=1.5e-4,
        metavar="LR",
        help="base learning rate: absolute_lr = base_lr * total_batch_size / 256",
    )
    parser.add_argument(
        "--min_lr",
        type=float,
        default=0.0,
        metavar="LR",
        help="lower lr bound for cyclic schedulers that hit 0",
    )
    parser.add_argument(
        "--warmup_epochs", type=int, default=40, metavar="N", help="epochs to warmup LR"
    )
    parser.add_argument(
        "--amp",
        type=int,
        default=1,
        choices=[0, 1],
        help="Use Automatic Mixed Precision for pretraining",
    )
    # others
    parser.add_argument("--num_workers", default=8, type=int)
    parser.add_argument(
        "--world_size", default=1, type=int, help="number of distributed processes"
    )
    parser.add_argument("--local_rank", default=-1, type=int)
    parser.add_argument(
        "--dist_url", default="env://", help="url used to set up distributed training"
    )
    parser.add_argument(
        "--save_freq",
        default=1,
        type=int,
        help="frequence (number of epochs) to save checkpoint in checkpoint-last.pth",
    )
    parser.add_argument(
        "--keep_freq",
        default=20,
        type=int,
        help="frequence (number of epochs) to save checkpoint in checkpoint-%d.pth",
    )
    parser.add_argument(
        "--print_freq",
        default=20,
        type=int,
        help="frequence (number of iterations) to print infos while training",
    )
    # paths
    parser.add_argument(
        "--output_dir",
        default="./output/",
        type=str,
        help="path where to save the output",
    )
    parser.add_argument(
        "--data_dir", default="./data/", type=str, help="path where data are stored"
    )
    return parser


def main(args):
    misc.init_distributed_mode(args)
    global_rank = misc.get_rank()
    world_size = misc.get_world_size()

    print("output_dir: " + args.output_dir)
    if args.output_dir:
        Path(args.output_dir).mkdir(parents=True, exist_ok=True)

    # auto resume
    last_ckpt_fname = os.path.join(args.output_dir, f"checkpoint-last.pth")
    args.resume = last_ckpt_fname if os.path.isfile(last_ckpt_fname) else None

    print("job dir: {}".format(os.path.dirname(os.path.realpath(__file__))))
    print("{}".format(args).replace(", ", ",\n"))

    device = "cuda" if torch.cuda.is_available() else "cpu"
    device = torch.device(device)

    # fix the seed
    seed = args.seed + misc.get_rank()
    torch.manual_seed(seed)
    np.random.seed(seed)

    cudnn.benchmark = True

    ## training dataset and loader
    print(
        "Building dataset for {:s} with transforms {:s}".format(
            args.dataset, args.transforms
        )
    )
    dataset = PairsDataset(args.dataset, trfs=args.transforms, data_dir=args.data_dir)
    if world_size > 1:
        sampler_train = torch.utils.data.DistributedSampler(
            dataset, num_replicas=world_size, rank=global_rank, shuffle=True
        )
        print("Sampler_train = %s" % str(sampler_train))
    else:
        sampler_train = torch.utils.data.RandomSampler(dataset)
    data_loader_train = torch.utils.data.DataLoader(
        dataset,
        sampler=sampler_train,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        pin_memory=True,
        drop_last=True,
    )

    ## model
    print("Loading model: {:s}".format(args.model))
    model = eval(args.model)
    print(
        "Loading criterion: MaskedMSE(norm_pix_loss={:s})".format(
            str(bool(args.norm_pix_loss))
        )
    )
    criterion = MaskedMSE(norm_pix_loss=bool(args.norm_pix_loss))

    model.to(device)
    model_without_ddp = model
    print("Model = %s" % str(model_without_ddp))

    eff_batch_size = args.batch_size * args.accum_iter * misc.get_world_size()
    if args.lr is None:  # only base_lr is specified
        args.lr = args.blr * eff_batch_size / 256
    print("base lr: %.2e" % (args.lr * 256 / eff_batch_size))
    print("actual lr: %.2e" % args.lr)
    print("accumulate grad iterations: %d" % args.accum_iter)
    print("effective batch size: %d" % eff_batch_size)

    if args.distributed:
        model = torch.nn.parallel.DistributedDataParallel(
            model, device_ids=[args.gpu], find_unused_parameters=True, static_graph=True
        )
        model_without_ddp = model.module

    param_groups = misc.get_parameter_groups(
        model_without_ddp, args.weight_decay
    )  # following timm: set wd as 0 for bias and norm layers
    optimizer = torch.optim.AdamW(param_groups, lr=args.lr, betas=(0.9, 0.95))
    print(optimizer)
    loss_scaler = NativeScaler()

    misc.load_model(
        args=args,
        model_without_ddp=model_without_ddp,
        optimizer=optimizer,
        loss_scaler=loss_scaler,
    )

    if global_rank == 0 and args.output_dir is not None:
        log_writer = SummaryWriter(log_dir=args.output_dir)
    else:
        log_writer = None

    print(f"Start training until {args.max_epoch} epochs")
    start_time = time.time()
    for epoch in range(args.start_epoch, args.max_epoch):
        if world_size > 1:
            data_loader_train.sampler.set_epoch(epoch)

        train_stats = train_one_epoch(
            model,
            criterion,
            data_loader_train,
            optimizer,
            device,
            epoch,
            loss_scaler,
            log_writer=log_writer,
            args=args,
        )

        if args.output_dir and epoch % args.save_freq == 0:
            misc.save_model(
                args=args,
                model_without_ddp=model_without_ddp,
                optimizer=optimizer,
                loss_scaler=loss_scaler,
                epoch=epoch,
                fname="last",
            )

        if (
            args.output_dir
            and (epoch % args.keep_freq == 0 or epoch + 1 == args.max_epoch)
            and (epoch > 0 or args.max_epoch == 1)
        ):
            misc.save_model(
                args=args,
                model_without_ddp=model_without_ddp,
                optimizer=optimizer,
                loss_scaler=loss_scaler,
                epoch=epoch,
            )

        log_stats = {
            **{f"train_{k}": v for k, v in train_stats.items()},
            "epoch": epoch,
        }

        if args.output_dir and misc.is_main_process():
            if log_writer is not None:
                log_writer.flush()
            with open(
                os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8"
            ) as f:
                f.write(json.dumps(log_stats) + "\n")

    total_time = time.time() - start_time
    total_time_str = str(datetime.timedelta(seconds=int(total_time)))
    print("Training time {}".format(total_time_str))


def train_one_epoch(
    model: torch.nn.Module,
    criterion: torch.nn.Module,
    data_loader: Iterable,
    optimizer: torch.optim.Optimizer,
    device: torch.device,
    epoch: int,
    loss_scaler,
    log_writer=None,
    args=None,
):
    model.train(True)
    metric_logger = misc.MetricLogger(delimiter="  ")
    metric_logger.add_meter("lr", misc.SmoothedValue(window_size=1, fmt="{value:.6f}"))
    header = "Epoch: [{}]".format(epoch)
    accum_iter = args.accum_iter

    optimizer.zero_grad()

    if log_writer is not None:
        print("log_dir: {}".format(log_writer.log_dir))

    for data_iter_step, (image1, image2) in enumerate(
        metric_logger.log_every(data_loader, args.print_freq, header)
    ):
        # we use a per iteration  lr scheduler
        if data_iter_step % accum_iter == 0:
            misc.adjust_learning_rate(
                optimizer, data_iter_step / len(data_loader) + epoch, args
            )

        image1 = image1.to(device, non_blocking=True)
        image2 = image2.to(device, non_blocking=True)
        with torch.cuda.amp.autocast(enabled=bool(args.amp)):
            out, mask, target = model(image1, image2)
            loss = criterion(out, mask, target)

        loss_value = loss.item()

        if not math.isfinite(loss_value):
            print("Loss is {}, stopping training".format(loss_value))
            sys.exit(1)

        loss /= accum_iter
        loss_scaler(
            loss,
            optimizer,
            parameters=model.parameters(),
            update_grad=(data_iter_step + 1) % accum_iter == 0,
        )
        if (data_iter_step + 1) % accum_iter == 0:
            optimizer.zero_grad()

        torch.cuda.synchronize()

        metric_logger.update(loss=loss_value)

        lr = optimizer.param_groups[0]["lr"]
        metric_logger.update(lr=lr)

        loss_value_reduce = misc.all_reduce_mean(loss_value)
        if (
            log_writer is not None
            and ((data_iter_step + 1) % (accum_iter * args.print_freq)) == 0
        ):
            # x-axis is based on epoch_1000x in the tensorboard, calibrating differences curves when batch size changes
            epoch_1000x = int((data_iter_step / len(data_loader) + epoch) * 1000)
            log_writer.add_scalar("train_loss", loss_value_reduce, epoch_1000x)
            log_writer.add_scalar("lr", lr, epoch_1000x)

    # gather the stats from all processes
    metric_logger.synchronize_between_processes()
    print("Averaged stats:", metric_logger)
    return {k: meter.global_avg for k, meter in metric_logger.meters.items()}


if __name__ == "__main__":
    args = get_args_parser()
    args = args.parse_args()
    main(args)