Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,6 +3,9 @@ import gradio as gr
|
|
3 |
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel, EulerAncestralDiscreteScheduler
|
4 |
from diffusers.utils import export_to_gif, load_image
|
5 |
from realesrgan import RealESRGAN
|
|
|
|
|
|
|
6 |
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
|
@@ -14,6 +17,13 @@ def enhance_quality(image_path):
|
|
14 |
sr_image.save('enhanced_' + image_path)
|
15 |
return 'enhanced_' + image_path
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
|
18 |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
|
19 |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
|
@@ -51,7 +61,8 @@ def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_fr
|
|
51 |
|
52 |
export_to_gif(video, "output.gif")
|
53 |
enhanced_gif = enhance_quality("output.gif")
|
54 |
-
|
|
|
55 |
|
56 |
def generate_simple_video(prompt):
|
57 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device)
|
@@ -76,7 +87,8 @@ def generate_simple_video(prompt):
|
|
76 |
|
77 |
export_to_gif(frames, "simple_output.gif")
|
78 |
enhanced_gif = enhance_quality("simple_output.gif")
|
79 |
-
|
|
|
80 |
|
81 |
demo1 = gr.Interface(
|
82 |
fn=generate_video,
|
@@ -102,6 +114,5 @@ demo2 = gr.Interface(
|
|
102 |
|
103 |
demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
|
104 |
|
105 |
-
|
106 |
demo.launch()
|
107 |
#demo.launch(server_name="0.0.0.0", server_port=7910)
|
|
|
3 |
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel, EulerAncestralDiscreteScheduler
|
4 |
from diffusers.utils import export_to_gif, load_image
|
5 |
from realesrgan import RealESRGAN
|
6 |
+
from PIL import Image
|
7 |
+
import cv2
|
8 |
+
import numpy as np
|
9 |
|
10 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
|
|
|
17 |
sr_image.save('enhanced_' + image_path)
|
18 |
return 'enhanced_' + image_path
|
19 |
|
20 |
+
def denoise_image(image_path):
|
21 |
+
image = cv2.imread(image_path)
|
22 |
+
denoised_image = cv2.fastNlMeansDenoisingColored(image, None, 10, 10, 7, 21)
|
23 |
+
denoised_path = 'denoised_' + image_path
|
24 |
+
cv2.imwrite(denoised_path, denoised_image)
|
25 |
+
return denoised_path
|
26 |
+
|
27 |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
|
28 |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
|
29 |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
|
|
|
61 |
|
62 |
export_to_gif(video, "output.gif")
|
63 |
enhanced_gif = enhance_quality("output.gif")
|
64 |
+
denoised_gif = denoise_image(enhanced_gif)
|
65 |
+
return denoised_gif
|
66 |
|
67 |
def generate_simple_video(prompt):
|
68 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device)
|
|
|
87 |
|
88 |
export_to_gif(frames, "simple_output.gif")
|
89 |
enhanced_gif = enhance_quality("simple_output.gif")
|
90 |
+
denoised_gif = denoise_image(enhanced_gif)
|
91 |
+
return denoised_gif
|
92 |
|
93 |
demo1 = gr.Interface(
|
94 |
fn=generate_video,
|
|
|
114 |
|
115 |
demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
|
116 |
|
|
|
117 |
demo.launch()
|
118 |
#demo.launch(server_name="0.0.0.0", server_port=7910)
|