Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,18 @@ import torch
|
|
2 |
import gradio as gr
|
3 |
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel, EulerAncestralDiscreteScheduler
|
4 |
from diffusers.utils import export_to_gif, load_image
|
|
|
5 |
|
6 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
|
9 |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
|
10 |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
|
@@ -41,7 +50,8 @@ def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_fr
|
|
41 |
).frames[0]
|
42 |
|
43 |
export_to_gif(video, "output.gif")
|
44 |
-
|
|
|
45 |
|
46 |
def generate_simple_video(prompt):
|
47 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device)
|
@@ -65,7 +75,8 @@ def generate_simple_video(prompt):
|
|
65 |
).frames[0]
|
66 |
|
67 |
export_to_gif(frames, "simple_output.gif")
|
68 |
-
|
|
|
69 |
|
70 |
demo1 = gr.Interface(
|
71 |
fn=generate_video,
|
@@ -91,5 +102,6 @@ demo2 = gr.Interface(
|
|
91 |
|
92 |
demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
|
93 |
|
|
|
94 |
demo.launch()
|
95 |
#demo.launch(server_name="0.0.0.0", server_port=7910)
|
|
|
2 |
import gradio as gr
|
3 |
from diffusers import AnimateDiffPipeline, MotionAdapter, DPMSolverMultistepScheduler, AutoencoderKL, SparseControlNetModel, EulerAncestralDiscreteScheduler
|
4 |
from diffusers.utils import export_to_gif, load_image
|
5 |
+
from realesrgan import RealESRGAN
|
6 |
|
7 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
8 |
|
9 |
+
def enhance_quality(image_path):
|
10 |
+
model = RealESRGAN(device, scale=4)
|
11 |
+
model.load_weights('RealESRGAN_x4.pth', download=True)
|
12 |
+
img = Image.open(image_path)
|
13 |
+
sr_image = model.predict(img)
|
14 |
+
sr_image.save('enhanced_' + image_path)
|
15 |
+
return 'enhanced_' + image_path
|
16 |
+
|
17 |
def generate_video(prompt, negative_prompt, num_inference_steps, conditioning_frame_indices, controlnet_conditioning_scale):
|
18 |
motion_adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-3", torch_dtype=torch.float16).to(device)
|
19 |
controlnet = SparseControlNetModel.from_pretrained("guoyww/animatediff-sparsectrl-scribble", torch_dtype=torch.float16).to(device)
|
|
|
50 |
).frames[0]
|
51 |
|
52 |
export_to_gif(video, "output.gif")
|
53 |
+
enhanced_gif = enhance_quality("output.gif")
|
54 |
+
return enhanced_gif
|
55 |
|
56 |
def generate_simple_video(prompt):
|
57 |
adapter = MotionAdapter.from_pretrained("guoyww/animatediff-motion-adapter-v1-5-2", torch_dtype=torch.float16).to(device)
|
|
|
75 |
).frames[0]
|
76 |
|
77 |
export_to_gif(frames, "simple_output.gif")
|
78 |
+
enhanced_gif = enhance_quality("simple_output.gif")
|
79 |
+
return enhanced_gif
|
80 |
|
81 |
demo1 = gr.Interface(
|
82 |
fn=generate_video,
|
|
|
102 |
|
103 |
demo = gr.TabbedInterface([demo1, demo2], ["Advanced Video Generation", "Simple Video Generation"])
|
104 |
|
105 |
+
|
106 |
demo.launch()
|
107 |
#demo.launch(server_name="0.0.0.0", server_port=7910)
|