|
from pdf2image import convert_from_path, pdfinfo_from_path
|
|
|
|
from PIL import Image, ImageFile
|
|
import os
|
|
import re
|
|
import time
|
|
import json
|
|
import numpy as np
|
|
import pymupdf
|
|
from pymupdf import Document, Page, Rect
|
|
import pandas as pd
|
|
import shutil
|
|
import zipfile
|
|
from collections import defaultdict
|
|
from tqdm import tqdm
|
|
from gradio import Progress
|
|
from typing import List, Optional, Dict, Any
|
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
|
from pdf2image import convert_from_path
|
|
from PIL import Image
|
|
from scipy.spatial import cKDTree
|
|
import random
|
|
import string
|
|
import warnings
|
|
|
|
IMAGE_NUM_REGEX = re.compile(r'_(\d+)\.png$')
|
|
|
|
pd.set_option('future.no_silent_downcasting', True)
|
|
|
|
from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, IMAGES_DPI, LOAD_TRUNCATED_IMAGES, MAX_IMAGE_PIXELS, CUSTOM_BOX_COLOUR
|
|
from tools.helper_functions import get_file_name_without_type, tesseract_ocr_option, text_ocr_option, textract_option, read_file
|
|
|
|
|
|
image_dpi = float(IMAGES_DPI)
|
|
if not MAX_IMAGE_PIXELS: Image.MAX_IMAGE_PIXELS = None
|
|
else: Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS
|
|
ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true"
|
|
|
|
def is_pdf_or_image(filename):
|
|
"""
|
|
Check if a file name is a PDF or an image file.
|
|
|
|
Args:
|
|
filename (str): The name of the file.
|
|
|
|
Returns:
|
|
bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise.
|
|
"""
|
|
if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"):
|
|
output = True
|
|
else:
|
|
output = False
|
|
return output
|
|
|
|
def is_pdf(filename):
|
|
"""
|
|
Check if a file name is a PDF.
|
|
|
|
Args:
|
|
filename (str): The name of the file.
|
|
|
|
Returns:
|
|
bool: True if the file name ends with ".pdf", False otherwise.
|
|
"""
|
|
return filename.lower().endswith(".pdf")
|
|
|
|
|
|
|
|
def check_image_size_and_reduce(out_path:str, image:Image):
|
|
'''
|
|
Check if a given image size is above around 4.5mb, and reduce size if necessary. 5mb is the maximum possible to submit to AWS Textract.
|
|
'''
|
|
|
|
all_img_details = []
|
|
page_num = 0
|
|
|
|
|
|
max_size = 4.5 * 1024 * 1024
|
|
file_size = os.path.getsize(out_path)
|
|
|
|
width = image.width
|
|
height = image.height
|
|
|
|
|
|
if file_size > max_size:
|
|
|
|
|
|
print(f"Image size before {width}x{height}, original file_size: {file_size}")
|
|
|
|
while file_size > max_size:
|
|
|
|
new_width = int(width * 0.5)
|
|
new_height = int(height * 0.5)
|
|
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
|
|
|
|
|
image.save(out_path, format="PNG", optimize=True)
|
|
|
|
|
|
file_size = os.path.getsize(out_path)
|
|
print(f"Resized to {new_width}x{new_height}, new file_size: {file_size}")
|
|
else:
|
|
new_width = width
|
|
new_height = height
|
|
|
|
|
|
all_img_details.append((page_num, image, new_width, new_height))
|
|
|
|
return image, new_width, new_height, all_img_details, out_path
|
|
|
|
def process_single_page_for_image_conversion(pdf_path:str, page_num:int, image_dpi:float=image_dpi, create_images:bool = True, input_folder: str = INPUT_FOLDER) -> tuple[int, str, float, float]:
|
|
|
|
out_path_placeholder = "placeholder_image_" + str(page_num) + ".png"
|
|
|
|
if create_images == True:
|
|
try:
|
|
|
|
image_output_dir = os.path.join(os.getcwd(), input_folder)
|
|
out_path = os.path.join(image_output_dir, f"{os.path.basename(pdf_path)}_{page_num}.png")
|
|
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
|
|
|
if os.path.exists(out_path):
|
|
|
|
image = Image.open(out_path)
|
|
elif pdf_path.lower().endswith(".pdf"):
|
|
|
|
image_l = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1,
|
|
dpi=image_dpi, use_cropbox=False, use_pdftocairo=False)
|
|
image = image_l[0]
|
|
image = image.convert("L")
|
|
|
|
image.save(out_path, format="PNG")
|
|
elif pdf_path.lower().endswith(".jpg") or pdf_path.lower().endswith(".png") or pdf_path.lower().endswith(".jpeg"):
|
|
image = Image.open(pdf_path)
|
|
image.save(out_path, format="PNG")
|
|
|
|
width, height = image.size
|
|
|
|
|
|
|
|
image, width, height, all_img_details, img_path = check_image_size_and_reduce(out_path, image)
|
|
|
|
return page_num, out_path, width, height
|
|
|
|
except Exception as e:
|
|
print(f"Error processing page {page_num + 1}: {e}")
|
|
return page_num, out_path_placeholder, pd.NA, pd.NA
|
|
else:
|
|
|
|
return page_num, out_path_placeholder, pd.NA, pd.NA
|
|
|
|
def convert_pdf_to_images(pdf_path: str, prepare_for_review:bool=False, page_min: int = 0, page_max:int = 0, create_images:bool=True, image_dpi: float = image_dpi, num_threads: int = 8, input_folder: str = INPUT_FOLDER):
|
|
|
|
|
|
if prepare_for_review == True:
|
|
page_count = pdfinfo_from_path(pdf_path)['Pages']
|
|
page_min = 0
|
|
page_max = page_count
|
|
else:
|
|
page_count = pdfinfo_from_path(pdf_path)['Pages']
|
|
|
|
print(f"Number of pages in PDF: {page_count}")
|
|
|
|
|
|
if page_max == 0: page_max = page_count
|
|
|
|
results = []
|
|
with ThreadPoolExecutor(max_workers=num_threads) as executor:
|
|
futures = []
|
|
for page_num in range(page_min, page_max):
|
|
futures.append(executor.submit(process_single_page_for_image_conversion, pdf_path, page_num, image_dpi, create_images=create_images, input_folder=input_folder))
|
|
|
|
for future in tqdm(as_completed(futures), total=len(futures), unit="pages", desc="Converting pages to image"):
|
|
page_num, img_path, width, height = future.result()
|
|
if img_path:
|
|
results.append((page_num, img_path, width, height))
|
|
else:
|
|
print(f"Page {page_num + 1} failed to process.")
|
|
results.append((page_num, "placeholder_image_" + str(page_num) + ".png", pd.NA, pd.NA))
|
|
|
|
|
|
results.sort(key=lambda x: x[0])
|
|
images = [result[1] for result in results]
|
|
widths = [result[2] for result in results]
|
|
heights = [result[3] for result in results]
|
|
|
|
|
|
return images, widths, heights, results
|
|
|
|
|
|
def process_file_for_image_creation(file_path:str, prepare_for_review:bool=False, input_folder:str=INPUT_FOLDER, create_images:bool=True):
|
|
|
|
file_extension = os.path.splitext(file_path)[1].lower()
|
|
|
|
|
|
if file_extension in ['.jpg', '.jpeg', '.png']:
|
|
print(f"{file_path} is an image file.")
|
|
|
|
img_object = [file_path]
|
|
|
|
|
|
image = Image.open(file_path)
|
|
img_object, image_sizes_width, image_sizes_height, all_img_details, img_path = check_image_size_and_reduce(file_path, image)
|
|
|
|
if not isinstance(image_sizes_width, list):
|
|
img_path = [img_path]
|
|
image_sizes_width = [image_sizes_width]
|
|
image_sizes_height = [image_sizes_height]
|
|
all_img_details = [all_img_details]
|
|
|
|
|
|
|
|
elif file_extension == '.pdf':
|
|
|
|
|
|
|
|
img_path, image_sizes_width, image_sizes_height, all_img_details = convert_pdf_to_images(file_path, prepare_for_review, input_folder=input_folder, create_images=create_images)
|
|
|
|
else:
|
|
print(f"{file_path} is not an image or PDF file.")
|
|
img_path = []
|
|
image_sizes_width = []
|
|
image_sizes_height = []
|
|
all_img_details = []
|
|
|
|
return img_path, image_sizes_width, image_sizes_height, all_img_details
|
|
|
|
def get_input_file_names(file_input:List[str]):
|
|
'''
|
|
Get list of input files to report to logs.
|
|
'''
|
|
|
|
all_relevant_files = []
|
|
file_name_with_extension = ""
|
|
full_file_name = ""
|
|
total_pdf_page_count = 0
|
|
|
|
if isinstance(file_input, dict):
|
|
file_input = os.path.abspath(file_input["name"])
|
|
|
|
if isinstance(file_input, str):
|
|
file_input_list = [file_input]
|
|
else:
|
|
file_input_list = file_input
|
|
|
|
for file in file_input_list:
|
|
if isinstance(file, str):
|
|
file_path = file
|
|
else:
|
|
file_path = file.name
|
|
|
|
file_path_without_ext = get_file_name_without_type(file_path)
|
|
|
|
file_extension = os.path.splitext(file_path)[1].lower()
|
|
|
|
|
|
if (file_extension in ['.jpg', '.jpeg', '.png', '.pdf', '.xlsx', '.csv', '.parquet']) & ("review_file" not in file_path_without_ext) & ("ocr_output" not in file_path_without_ext):
|
|
all_relevant_files.append(file_path_without_ext)
|
|
file_name_with_extension = file_path_without_ext + file_extension
|
|
full_file_name = file_path
|
|
|
|
|
|
if (file_extension in ['.pdf']):
|
|
|
|
pdf_document = pymupdf.open(file_path)
|
|
|
|
page_count = pdf_document.page_count
|
|
|
|
|
|
pdf_document.close()
|
|
else:
|
|
page_count = 1
|
|
|
|
total_pdf_page_count += page_count
|
|
|
|
all_relevant_files_str = ", ".join(all_relevant_files)
|
|
|
|
return all_relevant_files_str, file_name_with_extension, full_file_name, all_relevant_files, total_pdf_page_count
|
|
|
|
def convert_color_to_range_0_1(color):
|
|
return tuple(component / 255 for component in color)
|
|
|
|
def redact_single_box(pymupdf_page:Page, pymupdf_rect:Rect, img_annotation_box:dict, custom_colours:bool=False):
|
|
'''
|
|
Commit redaction boxes to a PyMuPDF page.
|
|
'''
|
|
|
|
pymupdf_x1 = pymupdf_rect[0]
|
|
pymupdf_y1 = pymupdf_rect[1]
|
|
pymupdf_x2 = pymupdf_rect[2]
|
|
pymupdf_y2 = pymupdf_rect[3]
|
|
|
|
|
|
redact_bottom_y = pymupdf_y1 + 2
|
|
redact_top_y = pymupdf_y2 - 2
|
|
|
|
|
|
if (redact_top_y - redact_bottom_y) < 1:
|
|
middle_y = (pymupdf_y1 + pymupdf_y2) / 2
|
|
redact_bottom_y = middle_y - 1
|
|
redact_top_y = middle_y + 1
|
|
|
|
|
|
rect_small_pixel_height = Rect(pymupdf_x1, redact_bottom_y, pymupdf_x2, redact_top_y)
|
|
|
|
|
|
|
|
pymupdf_page.add_redact_annot(rect_small_pixel_height)
|
|
|
|
|
|
shape = pymupdf_page.new_shape()
|
|
shape.draw_rect(pymupdf_rect)
|
|
|
|
if custom_colours == True:
|
|
if img_annotation_box["color"][0] > 1:
|
|
out_colour = convert_color_to_range_0_1(img_annotation_box["color"])
|
|
else:
|
|
out_colour = img_annotation_box["color"]
|
|
else:
|
|
if CUSTOM_BOX_COLOUR == "grey":
|
|
out_colour = (0.5, 0.5, 0.5)
|
|
else:
|
|
out_colour = (0,0,0)
|
|
|
|
shape.finish(color=out_colour, fill=out_colour)
|
|
|
|
shape.commit()
|
|
|
|
def convert_pymupdf_to_image_coords(pymupdf_page:Page, x1:float, y1:float, x2:float, y2:float, image: Image=None, image_dimensions:dict={}):
|
|
'''
|
|
Converts coordinates from pymupdf format to image coordinates,
|
|
accounting for mediabox dimensions and offset.
|
|
'''
|
|
|
|
rect = pymupdf_page.rect
|
|
rect_width = rect.width
|
|
rect_height = rect.height
|
|
|
|
|
|
mediabox = pymupdf_page.mediabox
|
|
mediabox_width = mediabox.width
|
|
mediabox_height = mediabox.height
|
|
|
|
|
|
if image:
|
|
image_page_width, image_page_height = image.size
|
|
elif image_dimensions:
|
|
image_page_width, image_page_height = image_dimensions['image_width'], image_dimensions['image_height']
|
|
else:
|
|
image_page_width, image_page_height = mediabox_width, mediabox_height
|
|
|
|
|
|
image_to_mediabox_x_scale = image_page_width / mediabox_width
|
|
image_to_mediabox_y_scale = image_page_height / mediabox_height
|
|
|
|
|
|
|
|
x1_image = x1 * image_to_mediabox_x_scale
|
|
x2_image = x2 * image_to_mediabox_x_scale
|
|
y1_image = y1 * image_to_mediabox_y_scale
|
|
y2_image = y2 * image_to_mediabox_y_scale
|
|
|
|
|
|
if mediabox_width != rect_width:
|
|
|
|
mediabox_to_rect_x_scale = mediabox_width / rect_width
|
|
mediabox_to_rect_y_scale = mediabox_height / rect_height
|
|
|
|
rect_to_mediabox_x_scale = rect_width / mediabox_width
|
|
|
|
|
|
mediabox_rect_x_diff = (mediabox_width - rect_width) * (image_to_mediabox_x_scale / 2)
|
|
mediabox_rect_y_diff = (mediabox_height - rect_height) * (image_to_mediabox_y_scale / 2)
|
|
|
|
x1_image -= mediabox_rect_x_diff
|
|
x2_image -= mediabox_rect_x_diff
|
|
y1_image += mediabox_rect_y_diff
|
|
y2_image += mediabox_rect_y_diff
|
|
|
|
|
|
x1_image *= mediabox_to_rect_x_scale
|
|
x2_image *= mediabox_to_rect_x_scale
|
|
y1_image *= mediabox_to_rect_y_scale
|
|
y2_image *= mediabox_to_rect_y_scale
|
|
|
|
return x1_image, y1_image, x2_image, y2_image
|
|
|
|
def redact_whole_pymupdf_page(rect_height:float, rect_width:float, image:Image, page:Page, custom_colours, border:float = 5, image_dimensions:dict={}):
|
|
|
|
border = 5
|
|
|
|
whole_page_x1, whole_page_y1 = 0 + border, 0 + border
|
|
whole_page_x2, whole_page_y2 = rect_width - border, rect_height - border
|
|
|
|
|
|
|
|
|
|
whole_page_rect = Rect(whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2)
|
|
|
|
|
|
whole_page_img_annotation_box = {}
|
|
whole_page_img_annotation_box["xmin"] = whole_page_x1
|
|
whole_page_img_annotation_box["ymin"] = whole_page_y1
|
|
whole_page_img_annotation_box["xmax"] = whole_page_x2
|
|
whole_page_img_annotation_box["ymax"] = whole_page_y2
|
|
whole_page_img_annotation_box["color"] = (0,0,0)
|
|
whole_page_img_annotation_box["label"] = "Whole page"
|
|
|
|
redact_single_box(page, whole_page_rect, whole_page_img_annotation_box, custom_colours)
|
|
|
|
return whole_page_img_annotation_box
|
|
|
|
def create_page_size_objects(pymupdf_doc:Document, image_sizes_width:List[float], image_sizes_height:List[float], image_file_paths:List[str]):
|
|
page_sizes = []
|
|
original_cropboxes = []
|
|
|
|
for page_no, page in enumerate(pymupdf_doc):
|
|
reported_page_no = page_no + 1
|
|
|
|
pymupdf_page = pymupdf_doc.load_page(page_no)
|
|
original_cropboxes.append(pymupdf_page.cropbox)
|
|
|
|
|
|
out_page_image_sizes = {
|
|
"page":reported_page_no,
|
|
"mediabox_width":pymupdf_page.mediabox.width,
|
|
"mediabox_height": pymupdf_page.mediabox.height,
|
|
"cropbox_width":pymupdf_page.cropbox.width,
|
|
"cropbox_height":pymupdf_page.cropbox.height,
|
|
"original_cropbox":original_cropboxes[-1],
|
|
"image_path":image_file_paths[page_no]}
|
|
|
|
|
|
|
|
out_page_image_sizes['cropbox_x_offset'] = pymupdf_page.cropbox.x0 - pymupdf_page.mediabox.x0
|
|
|
|
|
|
|
|
|
|
|
|
out_page_image_sizes['cropbox_y_offset_from_top'] = pymupdf_page.mediabox.y1 - pymupdf_page.cropbox.y1
|
|
|
|
if image_sizes_width and image_sizes_height:
|
|
out_page_image_sizes["image_width"] = image_sizes_width[page_no]
|
|
out_page_image_sizes["image_height"] = image_sizes_height[page_no]
|
|
|
|
page_sizes.append(out_page_image_sizes)
|
|
|
|
return page_sizes, original_cropboxes
|
|
|
|
def prepare_image_or_pdf(
|
|
file_paths: List[str],
|
|
in_redact_method: str,
|
|
latest_file_completed: int = 0,
|
|
out_message: List[str] = [],
|
|
first_loop_state: bool = False,
|
|
number_of_pages:int = 0,
|
|
all_annotations_object:List = [],
|
|
prepare_for_review:bool = False,
|
|
in_fully_redacted_list:List[int]=[],
|
|
output_folder:str=OUTPUT_FOLDER,
|
|
input_folder:str=INPUT_FOLDER,
|
|
prepare_images:bool=True,
|
|
page_sizes:list[dict]=[],
|
|
textract_output_found:bool = False,
|
|
local_ocr_output_found:bool = False,
|
|
progress: Progress = Progress(track_tqdm=True)
|
|
) -> tuple[List[str], List[str]]:
|
|
"""
|
|
Prepare and process image or text PDF files for redaction.
|
|
|
|
This function takes a list of file paths, processes each file based on the specified redaction method,
|
|
and returns the output messages and processed file paths.
|
|
|
|
Args:
|
|
file_paths (List[str]): List of file paths to process.
|
|
in_redact_method (str): The redaction method to use.
|
|
latest_file_completed (optional, int): Index of the last completed file.
|
|
out_message (optional, List[str]): List to store output messages.
|
|
first_loop_state (optional, bool): Flag indicating if this is the first iteration.
|
|
number_of_pages (optional, int): integer indicating the number of pages in the document
|
|
all_annotations_object(optional, List of annotation objects): All annotations for current document
|
|
prepare_for_review(optional, bool): Is this preparation step preparing pdfs and json files to review current redactions?
|
|
in_fully_redacted_list(optional, List of int): A list of pages to fully redact
|
|
output_folder (optional, str): The output folder for file save
|
|
prepare_images (optional, bool): A boolean indicating whether to create images for each PDF page. Defaults to True.
|
|
page_sizes(optional, List[dict]): A list of dicts containing information about page sizes in various formats.
|
|
textract_output_found (optional, bool): A boolean indicating whether Textract analysis output has already been found. Defaults to False.
|
|
local_ocr_output_found (optional, bool): A boolean indicating whether local OCR analysis output has already been found. Defaults to False.
|
|
progress (optional, Progress): Progress tracker for the operation
|
|
|
|
|
|
Returns:
|
|
tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths.
|
|
"""
|
|
|
|
tic = time.perf_counter()
|
|
json_from_csv = False
|
|
original_cropboxes = []
|
|
converted_file_paths = []
|
|
image_file_paths = []
|
|
pymupdf_doc = []
|
|
all_img_details = []
|
|
review_file_csv = pd.DataFrame()
|
|
all_line_level_ocr_results_df = pd.DataFrame()
|
|
out_textract_path = ""
|
|
combined_out_message = ""
|
|
final_out_message = ""
|
|
|
|
if isinstance(in_fully_redacted_list, pd.DataFrame):
|
|
if not in_fully_redacted_list.empty:
|
|
in_fully_redacted_list = in_fully_redacted_list.iloc[:,0].tolist()
|
|
|
|
|
|
if first_loop_state==True:
|
|
latest_file_completed = 0
|
|
out_message = []
|
|
all_annotations_object = []
|
|
else:
|
|
print("Now redacting file", str(latest_file_completed))
|
|
|
|
|
|
if isinstance(out_message, str): out_message = [out_message]
|
|
|
|
if not file_paths: file_paths = []
|
|
|
|
if isinstance(file_paths, dict): file_paths = os.path.abspath(file_paths["name"])
|
|
|
|
if isinstance(file_paths, str): file_path_number = 1
|
|
else: file_path_number = len(file_paths)
|
|
|
|
latest_file_completed = int(latest_file_completed)
|
|
|
|
|
|
if latest_file_completed >= file_path_number:
|
|
print("Last file reached, returning files:", str(latest_file_completed))
|
|
if isinstance(out_message, list):
|
|
final_out_message = '\n'.join(out_message)
|
|
else:
|
|
final_out_message = out_message
|
|
return final_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df, local_ocr_output_found
|
|
|
|
progress(0.1, desc='Preparing file')
|
|
|
|
if isinstance(file_paths, str):
|
|
file_paths_list = [file_paths]
|
|
file_paths_loop = file_paths_list
|
|
else:
|
|
file_paths_list = file_paths
|
|
file_paths_loop = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json'))
|
|
|
|
|
|
for file in file_paths_loop:
|
|
converted_file_path = []
|
|
image_file_path = []
|
|
|
|
if isinstance(file, str):
|
|
file_path = file
|
|
else:
|
|
file_path = file.name
|
|
file_path_without_ext = get_file_name_without_type(file_path)
|
|
file_name_with_ext = os.path.basename(file_path)
|
|
|
|
if not file_path:
|
|
out_message = "Please select a file."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
file_extension = os.path.splitext(file_path)[1].lower()
|
|
|
|
|
|
if is_pdf(file_path):
|
|
pymupdf_doc = pymupdf.open(file_path)
|
|
pymupdf_pages = pymupdf_doc.page_count
|
|
|
|
converted_file_path = file_path
|
|
|
|
if prepare_images==True:
|
|
image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path, prepare_for_review, input_folder, create_images=True)
|
|
else:
|
|
image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path, prepare_for_review, input_folder, create_images=False)
|
|
|
|
page_sizes, original_cropboxes = create_page_size_objects(pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths)
|
|
|
|
|
|
if (not all_annotations_object) & (prepare_for_review == True):
|
|
all_annotations_object = []
|
|
|
|
for image_path in image_file_paths:
|
|
annotation = {}
|
|
annotation["image"] = image_path
|
|
annotation["boxes"] = []
|
|
|
|
all_annotations_object.append(annotation)
|
|
|
|
elif is_pdf_or_image(file_path):
|
|
|
|
if file_extension in ['.jpg', '.jpeg', '.png'] and in_redact_method == text_ocr_option:
|
|
in_redact_method = tesseract_ocr_option
|
|
|
|
|
|
pymupdf_doc = pymupdf.open()
|
|
|
|
img = Image.open(file_path)
|
|
rect = pymupdf.Rect(0, 0, img.width, img.height)
|
|
pymupdf_page = pymupdf_doc.new_page(width=img.width, height=img.height)
|
|
pymupdf_page.insert_image(rect, filename=file_path)
|
|
pymupdf_page = pymupdf_doc.load_page(0)
|
|
|
|
file_path_str = str(file_path)
|
|
|
|
image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path_str, prepare_for_review, input_folder, create_images=True)
|
|
|
|
|
|
page_sizes, original_cropboxes = create_page_size_objects(pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths)
|
|
|
|
converted_file_path = output_folder + file_name_with_ext
|
|
|
|
pymupdf_doc.save(converted_file_path, garbage=4, deflate=True, clean=True)
|
|
|
|
elif file_extension in ['.csv']:
|
|
if '_review_file' in file_path_without_ext:
|
|
review_file_csv = read_file(file_path)
|
|
all_annotations_object = convert_review_df_to_annotation_json(review_file_csv, image_file_paths, page_sizes)
|
|
json_from_csv = True
|
|
|
|
elif '_ocr_output' in file_path_without_ext:
|
|
all_line_level_ocr_results_df = read_file(file_path)
|
|
json_from_csv = False
|
|
|
|
|
|
|
|
|
|
if (file_extension in ['.json']) | (json_from_csv == True):
|
|
|
|
if (file_extension in ['.json']) & (prepare_for_review == True):
|
|
if isinstance(file_path, str):
|
|
with open(file_path, 'r') as json_file:
|
|
all_annotations_object = json.load(json_file)
|
|
else:
|
|
|
|
all_annotations_object = json.loads(file_path)
|
|
|
|
|
|
elif (file_extension in ['.json']) and '_textract' in file_path_without_ext:
|
|
print("Saving Textract output")
|
|
|
|
output_textract_json_file_name = file_path_without_ext
|
|
if not file_path.endswith("_textract.json"): output_textract_json_file_name = file_path_without_ext + "_textract.json"
|
|
else: output_textract_json_file_name = file_path_without_ext + ".json"
|
|
|
|
out_textract_path = os.path.join(output_folder, output_textract_json_file_name)
|
|
|
|
|
|
shutil.copy2(file_path, out_textract_path)
|
|
textract_output_found = True
|
|
continue
|
|
|
|
elif (file_extension in ['.json']) and '_ocr_results_with_words' in file_path_without_ext:
|
|
print("Saving local OCR output")
|
|
|
|
output_ocr_results_with_words_json_file_name = file_path_without_ext
|
|
if not file_path.endswith("_ocr_results_with_words.json"): output_ocr_results_with_words_json_file_name = file_path_without_ext + "_ocr_results_with_words.json"
|
|
else: output_ocr_results_with_words_json_file_name = file_path_without_ext + ".json"
|
|
|
|
out_ocr_results_with_words_path = os.path.join(output_folder, output_ocr_results_with_words_json_file_name)
|
|
|
|
|
|
shutil.copy2(file_path, out_ocr_results_with_words_path)
|
|
local_ocr_output_found = True
|
|
continue
|
|
|
|
|
|
|
|
if all_annotations_object:
|
|
|
|
|
|
image_file_paths_pages = [
|
|
int(re.search(r'_(\d+)\.png$', os.path.basename(s)).group(1))
|
|
for s in image_file_paths
|
|
if re.search(r'_(\d+)\.png$', os.path.basename(s))
|
|
]
|
|
image_file_paths_pages = [int(i) for i in image_file_paths_pages]
|
|
|
|
|
|
if image_file_paths:
|
|
for i, image_file_path in enumerate(image_file_paths):
|
|
|
|
if i < len(all_annotations_object):
|
|
annotation = all_annotations_object[i]
|
|
else:
|
|
annotation = {}
|
|
all_annotations_object.append(annotation)
|
|
|
|
try:
|
|
if not annotation:
|
|
annotation = {"image":"", "boxes": []}
|
|
annotation_page_number = int(re.search(r'_(\d+)\.png$', image_file_path).group(1))
|
|
else:
|
|
annotation_page_number = int(re.search(r'_(\d+)\.png$', annotation["image"]).group(1))
|
|
except Exception as e:
|
|
print("Extracting page number from image failed due to:", e)
|
|
annotation_page_number = 0
|
|
|
|
|
|
if annotation_page_number in image_file_paths_pages:
|
|
|
|
|
|
correct_image_page = annotation_page_number
|
|
annotation["image"] = image_file_paths[correct_image_page]
|
|
else:
|
|
print("Page", annotation_page_number, "image file not found.")
|
|
|
|
all_annotations_object[i] = annotation
|
|
|
|
if isinstance(in_fully_redacted_list, list):
|
|
in_fully_redacted_list = pd.DataFrame(data={"fully_redacted_pages_list":in_fully_redacted_list})
|
|
|
|
|
|
if not in_fully_redacted_list.empty:
|
|
print("Redacting whole pages")
|
|
|
|
for i, image in enumerate(image_file_paths):
|
|
page = pymupdf_doc.load_page(i)
|
|
rect_height = page.rect.height
|
|
rect_width = page.rect.width
|
|
whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours = False, border = 5, image_dimensions={"image_width":image_sizes_width[i], "image_height":image_sizes_height[i]})
|
|
|
|
all_annotations_object.append(whole_page_img_annotation_box)
|
|
|
|
|
|
out_folder = output_folder + file_path_without_ext + ".json"
|
|
|
|
|
|
continue
|
|
|
|
|
|
elif file_extension in ['.zip']:
|
|
|
|
|
|
out_folder = os.path.join(output_folder, file_path_without_ext + "_textract.json")
|
|
|
|
|
|
|
|
with zipfile.ZipFile(file_path, 'r') as zip_ref:
|
|
json_files = [f for f in zip_ref.namelist() if f.lower().endswith('.json')]
|
|
|
|
if len(json_files) == 1:
|
|
json_filename = json_files[0]
|
|
|
|
|
|
extracted_path = os.path.join(os.path.dirname(file_path), json_filename)
|
|
zip_ref.extract(json_filename, os.path.dirname(file_path))
|
|
|
|
|
|
shutil.move(extracted_path, out_folder)
|
|
|
|
textract_output_found = True
|
|
else:
|
|
print(f"Skipping {file_path}: Expected 1 JSON file, found {len(json_files)}")
|
|
|
|
elif file_extension in ['.csv'] and "ocr_output" in file_path:
|
|
continue
|
|
|
|
|
|
else:
|
|
if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option:
|
|
if is_pdf_or_image(file_path) == False:
|
|
out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
elif in_redact_method == text_ocr_option:
|
|
if is_pdf(file_path) == False:
|
|
out_message = "Please upload a PDF file for text analysis."
|
|
print(out_message)
|
|
raise Exception(out_message)
|
|
|
|
converted_file_paths.append(converted_file_path)
|
|
image_file_paths.extend(image_file_path)
|
|
|
|
toc = time.perf_counter()
|
|
out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds."
|
|
|
|
print(out_time)
|
|
|
|
out_message.append(out_time)
|
|
combined_out_message = '\n'.join(out_message)
|
|
|
|
number_of_pages = len(page_sizes)
|
|
|
|
return combined_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df, local_ocr_output_found
|
|
|
|
def load_and_convert_ocr_results_with_words_json(ocr_results_with_words_json_file_path:str, log_files_output_paths:str, page_sizes_df:pd.DataFrame):
|
|
"""
|
|
Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary.
|
|
"""
|
|
|
|
if not os.path.exists(ocr_results_with_words_json_file_path):
|
|
print("No existing OCR results file found.")
|
|
return [], True, log_files_output_paths
|
|
|
|
no_ocr_results_with_words_file = False
|
|
print("Found existing OCR results json results file.")
|
|
|
|
|
|
if ocr_results_with_words_json_file_path not in log_files_output_paths:
|
|
log_files_output_paths.append(ocr_results_with_words_json_file_path)
|
|
|
|
try:
|
|
with open(ocr_results_with_words_json_file_path, 'r', encoding='utf-8') as json_file:
|
|
ocr_results_with_words_data = json.load(json_file)
|
|
except json.JSONDecodeError:
|
|
print("Error: Failed to parse OCR results JSON file. Returning empty data.")
|
|
return [], True, log_files_output_paths
|
|
|
|
|
|
if "page" and "results" in ocr_results_with_words_data[0]:
|
|
print("JSON already in the correct format for app. No changes needed.")
|
|
return ocr_results_with_words_data, False, log_files_output_paths
|
|
|
|
else:
|
|
print("Invalid OCR result JSON format: 'page' or 'results' key missing.")
|
|
|
|
return [], True, log_files_output_paths
|
|
|
|
def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str], image_dpi:float=image_dpi, output_folder:str=OUTPUT_FOLDER, input_folder:str=INPUT_FOLDER):
|
|
file_path_without_ext = get_file_name_without_type(in_file_path)
|
|
|
|
out_file_paths = out_text_file_path
|
|
|
|
|
|
pdf_text_image_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(out_file_paths[0], input_folder=input_folder)
|
|
out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf"
|
|
pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=image_dpi, save_all=True, append_images=pdf_text_image_paths[1:])
|
|
|
|
out_file_paths = [out_text_image_file_path]
|
|
|
|
out_message = "PDF " + file_path_without_ext + " converted to image-based file."
|
|
print(out_message)
|
|
|
|
return out_message, out_file_paths
|
|
|
|
def join_values_within_threshold(df1:pd.DataFrame, df2:pd.DataFrame):
|
|
|
|
threshold = 5
|
|
|
|
|
|
df1['key'] = 1
|
|
df2['key'] = 1
|
|
merged = pd.merge(df1, df2, on='key').drop(columns=['key'])
|
|
|
|
|
|
conditions = (
|
|
(abs(merged['xmin_x'] - merged['xmin_y']) <= threshold) &
|
|
(abs(merged['xmax_x'] - merged['xmax_y']) <= threshold) &
|
|
(abs(merged['ymin_x'] - merged['ymin_y']) <= threshold) &
|
|
(abs(merged['ymax_x'] - merged['ymax_y']) <= threshold)
|
|
)
|
|
|
|
|
|
filtered = merged[conditions]
|
|
|
|
|
|
result = filtered.drop_duplicates(subset=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x'])
|
|
|
|
|
|
final_df = pd.merge(df1, result, left_on=['xmin', 'xmax', 'ymin', 'ymax'], right_on=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x'], how='left')
|
|
|
|
|
|
final_df = final_df.drop(columns=['key'])
|
|
|
|
def remove_duplicate_images_with_blank_boxes(data: List[dict]) -> List[dict]:
|
|
'''
|
|
Remove items from the annotator object where the same page exists twice.
|
|
'''
|
|
|
|
image_groups = defaultdict(list)
|
|
for item in data:
|
|
image_groups[item['image']].append(item)
|
|
|
|
|
|
result = []
|
|
for image, items in image_groups.items():
|
|
|
|
non_empty_boxes = [item for item in items if item.get('boxes')]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if non_empty_boxes:
|
|
|
|
result.append(non_empty_boxes[0])
|
|
else:
|
|
|
|
result.append(items[0])
|
|
|
|
return result
|
|
|
|
def divide_coordinates_by_page_sizes(
|
|
review_file_df: pd.DataFrame,
|
|
page_sizes_df: pd.DataFrame,
|
|
xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"
|
|
) -> pd.DataFrame:
|
|
"""
|
|
Optimized function to convert absolute image coordinates (>1) to relative coordinates (<=1).
|
|
|
|
Identifies rows with absolute coordinates, merges page size information,
|
|
divides coordinates by dimensions, and combines with already-relative rows.
|
|
|
|
Args:
|
|
review_file_df: Input DataFrame with potentially mixed coordinate systems.
|
|
page_sizes_df: DataFrame with page dimensions ('page', 'image_width',
|
|
'image_height', 'mediabox_width', 'mediabox_height').
|
|
xmin, xmax, ymin, ymax: Names of the coordinate columns.
|
|
|
|
Returns:
|
|
DataFrame with coordinates converted to relative system, sorted.
|
|
"""
|
|
if review_file_df.empty or xmin not in review_file_df.columns:
|
|
return review_file_df
|
|
|
|
|
|
coord_cols = [xmin, xmax, ymin, ymax]
|
|
cols_to_convert = coord_cols + ["page"]
|
|
temp_df = review_file_df.copy()
|
|
|
|
for col in cols_to_convert:
|
|
if col in temp_df.columns:
|
|
temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce")
|
|
else:
|
|
|
|
if col == 'page' or col in coord_cols:
|
|
print(f"Warning: Required column '{col}' not found in review_file_df. Returning original DataFrame.")
|
|
return review_file_df
|
|
|
|
|
|
|
|
|
|
is_absolute_mask = (
|
|
(temp_df[xmin] > 1) & (temp_df[xmin].notna()) &
|
|
(temp_df[xmax] > 1) & (temp_df[xmax].notna()) &
|
|
(temp_df[ymin] > 1) & (temp_df[ymin].notna()) &
|
|
(temp_df[ymax] > 1) & (temp_df[ymax].notna())
|
|
)
|
|
|
|
|
|
df_rel = temp_df[~is_absolute_mask]
|
|
df_abs = temp_df[is_absolute_mask].copy()
|
|
|
|
|
|
if not df_abs.empty:
|
|
|
|
if "image_width" not in df_abs.columns and not page_sizes_df.empty:
|
|
ps_df_copy = page_sizes_df.copy()
|
|
|
|
|
|
ps_df_copy['page'] = pd.to_numeric(ps_df_copy['page'], errors='coerce')
|
|
|
|
|
|
merge_cols = ['page', 'image_width', 'image_height', 'mediabox_width', 'mediabox_height']
|
|
available_merge_cols = [col for col in merge_cols if col in ps_df_copy.columns]
|
|
|
|
|
|
for col in ['image_width', 'image_height', 'mediabox_width', 'mediabox_height']:
|
|
if col in ps_df_copy.columns:
|
|
|
|
if ps_df_copy[col].dtype == 'object':
|
|
ps_df_copy[col] = ps_df_copy[col].replace("<NA>", pd.NA)
|
|
|
|
ps_df_copy[col] = pd.to_numeric(ps_df_copy[col], errors='coerce')
|
|
|
|
|
|
if 'page' in available_merge_cols:
|
|
df_abs = df_abs.merge(
|
|
ps_df_copy[available_merge_cols],
|
|
on="page",
|
|
how="left"
|
|
)
|
|
else:
|
|
print("Warning: 'page' column not found in page_sizes_df. Cannot merge dimensions.")
|
|
|
|
|
|
|
|
if "image_width" in df_abs.columns and "mediabox_width" in df_abs.columns:
|
|
|
|
if df_abs["image_width"].isna().all():
|
|
print("Falling back to mediabox dimensions as image_width is entirely missing.")
|
|
df_abs["image_width"] = df_abs["image_width"].fillna(df_abs["mediabox_width"])
|
|
df_abs["image_height"] = df_abs["image_height"].fillna(df_abs["mediabox_height"])
|
|
else:
|
|
|
|
|
|
|
|
pass
|
|
|
|
|
|
divisors_numeric = True
|
|
for col in ["image_width", "image_height"]:
|
|
if col in df_abs.columns:
|
|
df_abs[col] = pd.to_numeric(df_abs[col], errors='coerce')
|
|
else:
|
|
print(f"Warning: Dimension column '{col}' missing. Cannot perform division.")
|
|
divisors_numeric = False
|
|
|
|
|
|
|
|
if divisors_numeric and "image_width" in df_abs.columns and "image_height" in df_abs.columns:
|
|
|
|
with np.errstate(divide='ignore', invalid='ignore'):
|
|
df_abs[xmin] = df_abs[xmin] / df_abs["image_width"]
|
|
df_abs[xmax] = df_abs[xmax] / df_abs["image_width"]
|
|
df_abs[ymin] = df_abs[ymin] / df_abs["image_height"]
|
|
df_abs[ymax] = df_abs[ymax] / df_abs["image_height"]
|
|
|
|
df_abs.replace([np.inf, -np.inf], np.nan, inplace=True)
|
|
else:
|
|
print("Skipping coordinate division due to missing or non-numeric dimension columns.")
|
|
|
|
|
|
|
|
dfs_to_concat = [df for df in [df_rel, df_abs] if not df.empty]
|
|
|
|
if dfs_to_concat:
|
|
final_df = pd.concat(dfs_to_concat, ignore_index=True)
|
|
else:
|
|
|
|
print("Warning: Both relative and absolute splits resulted in empty DataFrames.")
|
|
final_df = pd.DataFrame(columns=review_file_df.columns)
|
|
|
|
|
|
|
|
required_sort_columns = {"page", xmin, ymin}
|
|
if not final_df.empty and required_sort_columns.issubset(final_df.columns):
|
|
|
|
final_df['page'] = pd.to_numeric(final_df['page'], errors='coerce')
|
|
final_df[ymin] = pd.to_numeric(final_df[ymin], errors='coerce')
|
|
final_df[xmin] = pd.to_numeric(final_df[xmin], errors='coerce')
|
|
|
|
final_df.sort_values(["page", ymin, xmin], inplace=True, na_position='last')
|
|
|
|
|
|
|
|
|
|
cols_to_drop = ["image_width", "image_height", "mediabox_width", "mediabox_height"]
|
|
final_df = final_df.drop(columns=cols_to_drop, errors="ignore")
|
|
|
|
return final_df
|
|
|
|
def multiply_coordinates_by_page_sizes(
|
|
review_file_df: pd.DataFrame,
|
|
page_sizes_df: pd.DataFrame,
|
|
xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"
|
|
):
|
|
"""
|
|
Optimized function to convert relative coordinates to absolute based on page sizes.
|
|
|
|
Separates relative (<=1) and absolute (>1) coordinates, merges page sizes
|
|
for relative coordinates, calculates absolute pixel values, and recombines.
|
|
"""
|
|
if review_file_df.empty or xmin not in review_file_df.columns:
|
|
return review_file_df
|
|
|
|
coord_cols = [xmin, xmax, ymin, ymax]
|
|
|
|
for col in coord_cols + ["page"]:
|
|
if col in review_file_df.columns:
|
|
|
|
|
|
review_file_df[col] = pd.to_numeric(review_file_df[col], errors="coerce")
|
|
|
|
|
|
|
|
|
|
is_relative_mask = (
|
|
(review_file_df[xmin].le(1) & review_file_df[xmin].notna()) &
|
|
(review_file_df[xmax].le(1) & review_file_df[xmax].notna()) &
|
|
(review_file_df[ymin].le(1) & review_file_df[ymin].notna()) &
|
|
(review_file_df[ymax].le(1) & review_file_df[ymax].notna())
|
|
)
|
|
|
|
|
|
df_abs = review_file_df[~is_relative_mask].copy()
|
|
df_rel = review_file_df[is_relative_mask].copy()
|
|
|
|
if df_rel.empty:
|
|
|
|
if not df_abs.empty and {"page", xmin, ymin}.issubset(df_abs.columns):
|
|
df_abs.sort_values(["page", xmin, ymin], inplace=True, na_position='last')
|
|
return df_abs
|
|
|
|
|
|
if "image_width" not in df_rel.columns and not page_sizes_df.empty:
|
|
|
|
page_sizes_df = page_sizes_df.copy()
|
|
page_sizes_df['page'] = pd.to_numeric(page_sizes_df['page'], errors='coerce')
|
|
|
|
page_sizes_df[['image_width', 'image_height']] = page_sizes_df[['image_width','image_height']].replace("<NA>", pd.NA)
|
|
page_sizes_df['image_width'] = pd.to_numeric(page_sizes_df['image_width'], errors='coerce')
|
|
page_sizes_df['image_height'] = pd.to_numeric(page_sizes_df['image_height'], errors='coerce')
|
|
|
|
|
|
df_rel = df_rel.merge(
|
|
page_sizes_df[['page', 'image_width', 'image_height']],
|
|
on="page",
|
|
how="left"
|
|
)
|
|
|
|
|
|
if "image_width" in df_rel.columns:
|
|
|
|
has_size_mask = df_rel["image_width"].notna() & df_rel["image_height"].notna()
|
|
|
|
|
|
|
|
|
|
|
|
df_rel.loc[has_size_mask, xmin] *= df_rel.loc[has_size_mask, "image_width"]
|
|
df_rel.loc[has_size_mask, xmax] *= df_rel.loc[has_size_mask, "image_width"]
|
|
df_rel.loc[has_size_mask, ymin] *= df_rel.loc[has_size_mask, "image_height"]
|
|
df_rel.loc[has_size_mask, ymax] *= df_rel.loc[has_size_mask, "image_height"]
|
|
|
|
|
|
|
|
|
|
dfs_to_concat = [df for df in [df_abs, df_rel] if not df.empty]
|
|
|
|
if not dfs_to_concat:
|
|
return pd.DataFrame()
|
|
|
|
final_df = pd.concat(dfs_to_concat, ignore_index=True)
|
|
|
|
|
|
required_sort_columns = {"page", xmin, ymin}
|
|
if not final_df.empty and required_sort_columns.issubset(final_df.columns):
|
|
|
|
final_df.sort_values(["page", xmin, ymin], inplace=True, na_position='last')
|
|
|
|
return final_df
|
|
|
|
def do_proximity_match_by_page_for_text(df1:pd.DataFrame, df2:pd.DataFrame):
|
|
'''
|
|
Match text from one dataframe to another based on proximity matching of coordinates page by page.
|
|
'''
|
|
|
|
if not 'text' in df2.columns: df2['text'] = ''
|
|
if not 'text' in df1.columns: df1['text'] = ''
|
|
|
|
|
|
merge_keys = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page']
|
|
df1['key'] = df1[merge_keys].astype(str).agg('_'.join, axis=1)
|
|
df2['key'] = df2[merge_keys].astype(str).agg('_'.join, axis=1)
|
|
|
|
|
|
merged_df = df1.merge(df2[['key', 'text']], on='key', how='left', suffixes=('', '_duplicate'))
|
|
|
|
|
|
merged_df['text'] = np.where(
|
|
merged_df['text'].isna() | (merged_df['text'] == ''),
|
|
merged_df.pop('text_duplicate'),
|
|
merged_df['text']
|
|
)
|
|
|
|
|
|
tolerance = 0.02
|
|
|
|
|
|
page_trees = {}
|
|
for page in df2['page'].unique():
|
|
df2_page = df2[df2['page'] == page]
|
|
coords = df2_page[['xmin', 'ymin', 'xmax', 'ymax']].values
|
|
if np.all(np.isfinite(coords)) and len(coords) > 0:
|
|
page_trees[page] = (cKDTree(coords), df2_page)
|
|
|
|
|
|
for i, row in df1.iterrows():
|
|
page_number = row['page']
|
|
|
|
if page_number in page_trees:
|
|
tree, df2_page = page_trees[page_number]
|
|
|
|
|
|
dist, idx = tree.query([row[['xmin', 'ymin', 'xmax', 'ymax']].values], distance_upper_bound=tolerance)
|
|
|
|
if dist[0] < tolerance and idx[0] < len(df2_page):
|
|
merged_df.at[i, 'text'] = df2_page.iloc[idx[0]]['text']
|
|
|
|
|
|
merged_df.drop(columns=['key'], inplace=True)
|
|
|
|
return merged_df
|
|
|
|
def do_proximity_match_all_pages_for_text(df1:pd.DataFrame, df2:pd.DataFrame, threshold:float=0.03):
|
|
'''
|
|
Match text from one dataframe to another based on proximity matching of coordinates across all pages.
|
|
'''
|
|
|
|
if not 'text' in df2.columns: df2['text'] = ''
|
|
if not 'text' in df1.columns: df1['text'] = ''
|
|
|
|
for col in ['xmin', 'ymin', 'xmax', 'ymax']:
|
|
df1[col] = pd.to_numeric(df1[col], errors='coerce')
|
|
|
|
for col in ['xmin', 'ymin', 'xmax', 'ymax']:
|
|
df2[col] = pd.to_numeric(df2[col], errors='coerce')
|
|
|
|
|
|
merge_keys = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page']
|
|
df1['key'] = df1[merge_keys].astype(str).agg('_'.join, axis=1)
|
|
df2['key'] = df2[merge_keys].astype(str).agg('_'.join, axis=1)
|
|
|
|
|
|
merged_df = df1.merge(df2[['key', 'text']], on='key', how='left', suffixes=('', '_duplicate'))
|
|
|
|
|
|
merged_df['text'] = np.where(
|
|
merged_df['text'].isna() | (merged_df['text'] == ''),
|
|
merged_df.pop('text_duplicate'),
|
|
merged_df['text']
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
query_coords = np.array(df1[['xmin', 'ymin', 'xmax', 'ymax']].values, dtype=float)
|
|
|
|
|
|
finite_mask = np.isfinite(query_coords).all(axis=1)
|
|
if not finite_mask.all():
|
|
|
|
query_coords = query_coords[finite_mask]
|
|
else:
|
|
pass
|
|
|
|
|
|
if query_coords.size > 0:
|
|
|
|
finite_mask_df2 = np.isfinite(df2[['xmin', 'ymin', 'xmax', 'ymax']].values).all(axis=1)
|
|
df2_finite = df2[finite_mask_df2]
|
|
|
|
|
|
tree = cKDTree(df2_finite[['xmin', 'ymin', 'xmax', 'ymax']].values)
|
|
|
|
|
|
tolerance = threshold
|
|
distances, indices = tree.query(query_coords, distance_upper_bound=tolerance)
|
|
|
|
|
|
for i, (dist, idx) in enumerate(zip(distances, indices)):
|
|
if dist < tolerance and idx < len(df2_finite):
|
|
merged_df.at[i, 'text'] = df2_finite.iloc[idx]['text']
|
|
|
|
|
|
merged_df.drop(columns=['key'], inplace=True)
|
|
|
|
return merged_df
|
|
|
|
def _extract_page_number(image_path: Any) -> int:
|
|
"""Helper function to safely extract page number."""
|
|
if not isinstance(image_path, str):
|
|
return 1
|
|
match = IMAGE_NUM_REGEX.search(image_path)
|
|
if match:
|
|
try:
|
|
return int(match.group(1)) + 1
|
|
except (ValueError, TypeError):
|
|
return 1
|
|
return 1
|
|
|
|
def convert_annotation_data_to_dataframe(all_annotations: List[Dict[str, Any]]):
|
|
'''
|
|
Convert annotation list to DataFrame using Pandas explode and json_normalize.
|
|
'''
|
|
if not all_annotations:
|
|
|
|
return pd.DataFrame(columns=["image", "page", "xmin", "xmax", "ymin", "ymax", "text", "id"])
|
|
|
|
|
|
|
|
df = pd.DataFrame({
|
|
"image": [anno.get("image") for anno in all_annotations],
|
|
|
|
"boxes": [anno.get("boxes") if isinstance(anno.get("boxes"), list) else [] for anno in all_annotations]
|
|
})
|
|
|
|
|
|
df['page'] = df['image'].apply(_extract_page_number)
|
|
|
|
|
|
|
|
|
|
|
|
placeholder_box = {"xmin": pd.NA, "xmax": pd.NA, "ymin": pd.NA, "ymax": pd.NA, "text": pd.NA, "id": pd.NA}
|
|
df['boxes'] = df['boxes'].apply(lambda x: x if x else [placeholder_box])
|
|
|
|
|
|
df_exploded = df.explode('boxes', ignore_index=True)
|
|
|
|
|
|
|
|
|
|
mask = df_exploded['boxes'].notna() & df_exploded['boxes'].apply(isinstance, args=(dict,))
|
|
normalized_boxes = pd.json_normalize(df_exploded.loc[mask, 'boxes'])
|
|
|
|
|
|
|
|
final_df = df_exploded.loc[mask, ['image', 'page']].reset_index(drop=True).join(normalized_boxes)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
essential_box_cols = ["xmin", "xmax", "ymin", "ymax", "text", "id", "label"]
|
|
for col in essential_box_cols:
|
|
if col not in final_df.columns:
|
|
final_df[col] = pd.NA
|
|
final_df[col] = final_df[col].replace({None: pd.NA})
|
|
|
|
base_cols = ["image"]
|
|
extra_box_cols = [col for col in final_df.columns if col not in base_cols and col not in essential_box_cols]
|
|
final_col_order = base_cols + essential_box_cols + sorted(extra_box_cols)
|
|
|
|
|
|
|
|
|
|
final_df = final_df.reindex(columns=final_col_order, fill_value=pd.NA)
|
|
final_df = final_df.dropna(subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"], how="all")
|
|
final_df.replace({None: pd.NA})
|
|
|
|
return final_df
|
|
|
|
def create_annotation_dicts_from_annotation_df(
|
|
all_image_annotations_df: pd.DataFrame,
|
|
page_sizes: List[Dict[str, Any]]
|
|
) -> List[Dict[str, Any]]:
|
|
'''
|
|
Convert annotation DataFrame back to list of dicts using dictionary lookup.
|
|
Ensures all images from page_sizes are present without duplicates.
|
|
'''
|
|
|
|
|
|
image_dict: Dict[str, Dict[str, Any]] = {}
|
|
for item in page_sizes:
|
|
image_path = item.get("image_path")
|
|
if image_path:
|
|
image_dict[image_path] = {"image": image_path, "boxes": []}
|
|
|
|
|
|
if all_image_annotations_df.empty or 'image' not in all_image_annotations_df.columns:
|
|
|
|
return list(image_dict.values())
|
|
|
|
|
|
|
|
box_cols = ['xmin', 'ymin', 'xmax', 'ymax', 'color', 'label', 'text', 'id']
|
|
available_cols = [col for col in box_cols if col in all_image_annotations_df.columns]
|
|
|
|
if 'text' in all_image_annotations_df.columns:
|
|
all_image_annotations_df['text'] = all_image_annotations_df['text'].fillna('')
|
|
|
|
|
|
if not available_cols:
|
|
print(f"Warning: None of the expected box columns ({box_cols}) found in DataFrame.")
|
|
return list(image_dict.values())
|
|
|
|
|
|
|
|
coord_cols = ['xmin', 'ymin', 'xmax', 'ymax']
|
|
valid_box_df = all_image_annotations_df.dropna(
|
|
subset=[col for col in coord_cols if col in available_cols]
|
|
).copy()
|
|
|
|
|
|
|
|
if valid_box_df.empty:
|
|
print("Warning: No valid annotation rows found in DataFrame after dropping NA coordinates.")
|
|
return list(image_dict.values())
|
|
|
|
|
|
try:
|
|
for image_path, group in valid_box_df.groupby('image', observed=True, sort=False):
|
|
|
|
if image_path in image_dict:
|
|
|
|
|
|
boxes = group[available_cols].to_dict(orient='records')
|
|
|
|
image_dict[image_path]['boxes'] = boxes
|
|
|
|
except KeyError:
|
|
|
|
print("Error: Issue grouping DataFrame by 'image'.")
|
|
return list(image_dict.values())
|
|
|
|
|
|
|
|
result = list(image_dict.values())
|
|
|
|
return result
|
|
|
|
def convert_annotation_json_to_review_df(
|
|
all_annotations: List[dict],
|
|
redaction_decision_output: pd.DataFrame = pd.DataFrame(),
|
|
page_sizes: List[dict] = [],
|
|
do_proximity_match: bool = True
|
|
) -> pd.DataFrame:
|
|
'''
|
|
Convert the annotation json data to a dataframe format.
|
|
Add on any text from the initial review_file dataframe by joining based on 'id' if available
|
|
in both sources, otherwise falling back to joining on pages/co-ordinates (if option selected).
|
|
|
|
Refactored for improved efficiency, prioritizing ID-based join and conditionally applying
|
|
coordinate division and proximity matching.
|
|
'''
|
|
|
|
|
|
review_file_df = convert_annotation_data_to_dataframe(all_annotations)
|
|
|
|
|
|
|
|
review_file_df.dropna(subset=['xmin', 'ymin', 'xmax', 'ymax'], how='any', inplace=True)
|
|
|
|
|
|
if review_file_df.empty:
|
|
|
|
|
|
|
|
|
|
standard_cols = ["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text"]
|
|
if 'id' in review_file_df.columns:
|
|
standard_cols.append('id')
|
|
return pd.DataFrame(columns=standard_cols)
|
|
|
|
|
|
if 'id' not in review_file_df.columns:
|
|
review_file_df['id'] = ''
|
|
|
|
if not redaction_decision_output.empty and 'id' not in redaction_decision_output.columns:
|
|
redaction_decision_output['id'] = ''
|
|
|
|
|
|
|
|
|
|
page_sizes_df = pd.DataFrame()
|
|
if page_sizes:
|
|
page_sizes_df = pd.DataFrame(page_sizes)
|
|
if not page_sizes_df.empty:
|
|
|
|
page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce")
|
|
page_sizes_df.dropna(subset=["page"], inplace=True)
|
|
if not page_sizes_df.empty:
|
|
page_sizes_df["page"] = page_sizes_df["page"].astype(int)
|
|
else:
|
|
print("Warning: Page sizes DataFrame became empty after processing, coordinate division will be skipped.")
|
|
|
|
|
|
|
|
text_added_successfully = False
|
|
|
|
if not redaction_decision_output.empty:
|
|
|
|
|
|
|
|
id_col_exists_in_review = 'id' in review_file_df.columns and not review_file_df['id'].isnull().all() and not (review_file_df['id'] == '').all()
|
|
id_col_exists_in_redaction = 'id' in redaction_decision_output.columns and not redaction_decision_output['id'].isnull().all() and not (redaction_decision_output['id'] == '').all()
|
|
|
|
|
|
if id_col_exists_in_review and id_col_exists_in_redaction:
|
|
|
|
try:
|
|
|
|
review_file_df['id'] = review_file_df['id'].astype(str)
|
|
|
|
|
|
redaction_copy = redaction_decision_output.copy()
|
|
redaction_copy['id'] = redaction_copy['id'].astype(str)
|
|
|
|
|
|
cols_to_merge = ['id']
|
|
if 'text' in redaction_copy.columns:
|
|
cols_to_merge.append('text')
|
|
else:
|
|
print("Warning: 'text' column not found in redaction_decision_output. Cannot merge text using 'id'.")
|
|
|
|
|
|
|
|
original_text_col_exists = 'text' in review_file_df.columns
|
|
merge_suffix = '_redaction' if original_text_col_exists else ''
|
|
|
|
merged_df = pd.merge(
|
|
review_file_df,
|
|
redaction_copy[cols_to_merge],
|
|
on='id',
|
|
how='left',
|
|
suffixes=('', merge_suffix)
|
|
)
|
|
|
|
|
|
if 'text' + merge_suffix in merged_df.columns:
|
|
redaction_text_col = 'text' + merge_suffix
|
|
if original_text_col_exists:
|
|
|
|
merged_df['text'] = merged_df[redaction_text_col].combine_first(merged_df['text'])
|
|
|
|
merged_df = merged_df.drop(columns=[redaction_text_col])
|
|
else:
|
|
|
|
merged_df = merged_df.rename(columns={redaction_text_col: 'text'})
|
|
|
|
text_added_successfully = True
|
|
|
|
review_file_df = merged_df
|
|
|
|
|
|
|
|
except Exception as e:
|
|
print(f"Error during 'id'-based merge: {e}. Checking for proximity match fallback.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not text_added_successfully and do_proximity_match:
|
|
print("Attempting proximity match to add text data.")
|
|
|
|
|
|
|
|
if 'page' in review_file_df.columns:
|
|
review_file_df['page'] = pd.to_numeric(review_file_df['page'], errors='coerce').fillna(-1).astype(int)
|
|
review_file_df = review_file_df[review_file_df['page'] != -1]
|
|
if not redaction_decision_output.empty and 'page' in redaction_decision_output.columns:
|
|
redaction_decision_output['page'] = pd.to_numeric(redaction_decision_output['page'], errors='coerce').fillna(-1).astype(int)
|
|
redaction_decision_output = redaction_decision_output[redaction_decision_output['page'] != -1]
|
|
|
|
|
|
if not page_sizes_df.empty:
|
|
|
|
review_file_df = divide_coordinates_by_page_sizes(review_file_df, page_sizes_df)
|
|
if not redaction_decision_output.empty:
|
|
redaction_decision_output = divide_coordinates_by_page_sizes(redaction_decision_output, page_sizes_df)
|
|
|
|
|
|
|
|
if not redaction_decision_output.empty:
|
|
try:
|
|
review_file_df = do_proximity_match_all_pages_for_text(
|
|
df1=review_file_df,
|
|
df2=redaction_decision_output
|
|
)
|
|
|
|
if 'text' in review_file_df.columns:
|
|
text_added_successfully = True
|
|
print("Proximity match completed.")
|
|
except Exception as e:
|
|
print(f"Error during proximity match: {e}. Text data may not be added.")
|
|
|
|
elif not text_added_successfully and not do_proximity_match:
|
|
print("Skipping joining text data (ID join not possible/failed, proximity match disabled).")
|
|
|
|
|
|
|
|
required_columns_base = ["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax"]
|
|
final_columns = required_columns_base[:]
|
|
|
|
|
|
if 'id' in review_file_df.columns:
|
|
final_columns.append('id')
|
|
if 'text' in review_file_df.columns:
|
|
final_columns.append('text')
|
|
|
|
|
|
for col in final_columns:
|
|
if col not in review_file_df.columns:
|
|
|
|
|
|
review_file_df[col] = ''
|
|
|
|
|
|
|
|
review_file_df = review_file_df[[col for col in final_columns if col in review_file_df.columns]]
|
|
|
|
|
|
|
|
|
|
if 'color' in review_file_df.columns:
|
|
|
|
if review_file_df['color'].apply(lambda x: isinstance(x, list)).any():
|
|
review_file_df["color"] = review_file_df["color"].apply(lambda x: tuple(x) if isinstance(x, list) else x)
|
|
|
|
|
|
|
|
sort_columns = ['page', 'ymin', 'xmin', 'label']
|
|
valid_sort_columns = [col for col in sort_columns if col in review_file_df.columns]
|
|
if valid_sort_columns and not review_file_df.empty:
|
|
|
|
|
|
|
|
|
|
try:
|
|
review_file_df = review_file_df.sort_values(valid_sort_columns)
|
|
except TypeError as e:
|
|
print(f"Warning: Could not sort DataFrame due to type error in sort columns: {e}")
|
|
|
|
|
|
review_file_df = review_file_df.dropna(subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"])
|
|
|
|
return review_file_df
|
|
|
|
def fill_missing_box_ids(data_input: dict) -> dict:
|
|
"""
|
|
Generates unique alphanumeric IDs for bounding boxes in an input dictionary
|
|
where the 'id' is missing, blank, or not a 12-character string.
|
|
|
|
Args:
|
|
data_input (dict): The input dictionary containing 'image' and 'boxes' keys.
|
|
'boxes' should be a list of dictionaries, each potentially
|
|
with an 'id' key.
|
|
|
|
Returns:
|
|
dict: The input dictionary with missing/invalid box IDs filled.
|
|
Note: The function modifies the input dictionary in place.
|
|
"""
|
|
|
|
|
|
if not isinstance(data_input, dict):
|
|
raise TypeError("Input 'data_input' must be a dictionary.")
|
|
|
|
|
|
|
|
boxes = data_input
|
|
id_length = 12
|
|
character_set = string.ascii_letters + string.digits
|
|
|
|
|
|
|
|
existing_ids = set()
|
|
|
|
|
|
box_id = boxes.get('id')
|
|
if isinstance(box_id, str) and len(box_id) == id_length:
|
|
existing_ids.add(box_id)
|
|
|
|
|
|
generated_ids_set = set()
|
|
num_filled = 0
|
|
|
|
|
|
box_id = boxes.get('id')
|
|
|
|
|
|
|
|
|
|
|
|
needs_new_id = (
|
|
box_id is None or
|
|
not isinstance(box_id, str) or
|
|
box_id.strip() == "" or
|
|
len(box_id) != id_length
|
|
)
|
|
|
|
if needs_new_id:
|
|
|
|
attempts = 0
|
|
while True:
|
|
candidate_id = ''.join(random.choices(character_set, k=id_length))
|
|
|
|
if candidate_id not in existing_ids and candidate_id not in generated_ids_set:
|
|
generated_ids_set.add(candidate_id)
|
|
boxes['id'] = candidate_id
|
|
num_filled += 1
|
|
break
|
|
attempts += 1
|
|
|
|
if attempts > len(boxes) * 100 + 1000:
|
|
raise RuntimeError(f"Failed to generate a unique ID after {attempts} attempts. Check ID length or existing IDs.")
|
|
|
|
if num_filled > 0:
|
|
pass
|
|
|
|
else:
|
|
pass
|
|
|
|
|
|
|
|
|
|
return data_input
|
|
|
|
def fill_missing_ids(df: pd.DataFrame, column_name: str = 'id', length: int = 12) -> pd.DataFrame:
|
|
"""
|
|
Optimized: Generates unique alphanumeric IDs for rows in a DataFrame column
|
|
where the value is missing (NaN, None) or an empty/whitespace string.
|
|
|
|
Args:
|
|
df (pd.DataFrame): The input Pandas DataFrame.
|
|
column_name (str): The name of the column to check and fill (defaults to 'id').
|
|
This column will be added if it doesn't exist.
|
|
length (int): The desired length of the generated IDs (defaults to 12).
|
|
|
|
Returns:
|
|
pd.DataFrame: The DataFrame with missing/empty IDs filled in the specified column.
|
|
Note: The function modifies the DataFrame directly (in-place).
|
|
"""
|
|
|
|
|
|
if not isinstance(df, pd.DataFrame):
|
|
raise TypeError("Input 'df' must be a Pandas DataFrame.")
|
|
if not isinstance(column_name, str) or not column_name:
|
|
raise ValueError("'column_name' must be a non-empty string.")
|
|
if not isinstance(length, int) or length <= 0:
|
|
raise ValueError("'length' must be a positive integer.")
|
|
|
|
|
|
original_dtype = None
|
|
if column_name not in df.columns:
|
|
print(f"Column '{column_name}' not found. Adding it to the DataFrame.")
|
|
|
|
df[column_name] = None
|
|
|
|
original_dtype = object
|
|
else:
|
|
original_dtype = df[column_name].dtype
|
|
|
|
|
|
|
|
is_null = df[column_name].isna()
|
|
|
|
|
|
|
|
|
|
is_empty_str = pd.Series(False, index=df.index)
|
|
if not is_null.all():
|
|
temp_str_col = df.loc[~is_null, column_name].astype(str).str.strip()
|
|
is_empty_str.loc[~is_null] = (temp_str_col == '')
|
|
|
|
|
|
is_missing_or_empty = is_null | is_empty_str
|
|
|
|
rows_to_fill_index = df.index[is_missing_or_empty]
|
|
num_needed = len(rows_to_fill_index)
|
|
|
|
if num_needed == 0:
|
|
|
|
if pd.api.types.is_object_dtype(original_dtype) or pd.api.types.is_string_dtype(original_dtype):
|
|
pass
|
|
else:
|
|
|
|
pass
|
|
|
|
return df
|
|
|
|
print(f"Found {num_needed} rows requiring a unique ID in column '{column_name}'.")
|
|
|
|
|
|
|
|
valid_rows = df.loc[~is_missing_or_empty, column_name]
|
|
|
|
valid_rows = valid_rows.dropna()
|
|
|
|
if not pd.api.types.is_object_dtype(valid_rows.dtype) and not pd.api.types.is_string_dtype(valid_rows.dtype):
|
|
existing_ids = set(valid_rows.astype(str).str.strip())
|
|
else:
|
|
existing_ids = set(valid_rows.astype(str).str.strip())
|
|
|
|
|
|
existing_ids.discard('')
|
|
|
|
|
|
|
|
character_set = string.ascii_letters + string.digits
|
|
generated_ids_set = set()
|
|
new_ids_list = []
|
|
|
|
max_possible_ids = len(character_set) ** length
|
|
if num_needed > max_possible_ids:
|
|
raise ValueError(f"Cannot generate {num_needed} unique IDs with length {length}. Maximum possible is {max_possible_ids}.")
|
|
|
|
|
|
max_attempts_per_id = max(1000, num_needed * 10)
|
|
|
|
|
|
for i in range(num_needed):
|
|
attempts = 0
|
|
while True:
|
|
candidate_id = ''.join(random.choices(character_set, k=length))
|
|
|
|
if candidate_id not in existing_ids and candidate_id not in generated_ids_set:
|
|
generated_ids_set.add(candidate_id)
|
|
new_ids_list.append(candidate_id)
|
|
break
|
|
attempts += 1
|
|
if attempts > max_attempts_per_id :
|
|
raise RuntimeError(f"Failed to generate a unique ID after {attempts} attempts. Check length, character set, or density of existing IDs.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if not pd.api.types.is_object_dtype(original_dtype) and not pd.api.types.is_string_dtype(original_dtype):
|
|
warnings.warn(f"Column '{column_name}' dtype might change from '{original_dtype}' to 'object' due to string ID assignment.", UserWarning)
|
|
|
|
df.loc[rows_to_fill_index, column_name] = new_ids_list
|
|
print(f"Successfully assigned {len(new_ids_list)} new unique IDs to column '{column_name}'.")
|
|
|
|
|
|
|
|
|
|
return df
|
|
|
|
def convert_review_df_to_annotation_json(
|
|
review_file_df: pd.DataFrame,
|
|
image_paths: List[str],
|
|
page_sizes: List[Dict],
|
|
xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"
|
|
) -> List[Dict]:
|
|
"""
|
|
Optimized function to convert review DataFrame to Gradio Annotation JSON format.
|
|
|
|
Ensures absolute coordinates, handles missing IDs, deduplicates based on key fields,
|
|
selects final columns, and structures data per image/page based on page_sizes.
|
|
|
|
Args:
|
|
review_file_df: Input DataFrame with annotation data.
|
|
image_paths: List of image file paths (Note: currently unused if page_sizes provides paths).
|
|
page_sizes: REQUIRED list of dictionaries, each containing 'page',
|
|
'image_path', 'image_width', and 'image_height'. Defines
|
|
output structure and dimensions for coordinate conversion.
|
|
xmin, xmax, ymin, ymax: Names of the coordinate columns.
|
|
|
|
Returns:
|
|
List of dictionaries suitable for Gradio Annotation output, one dict per image/page.
|
|
"""
|
|
review_file_df = review_file_df.dropna(subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"])
|
|
|
|
if not page_sizes:
|
|
raise ValueError("page_sizes argument is required and cannot be empty.")
|
|
|
|
|
|
try:
|
|
page_sizes_df = pd.DataFrame(page_sizes)
|
|
required_ps_cols = {'page', 'image_path', 'image_width', 'image_height'}
|
|
if not required_ps_cols.issubset(page_sizes_df.columns):
|
|
missing = required_ps_cols - set(page_sizes_df.columns)
|
|
raise ValueError(f"page_sizes is missing required keys: {missing}")
|
|
|
|
page_sizes_df['page'] = pd.to_numeric(page_sizes_df['page'], errors='coerce')
|
|
page_sizes_df['image_width'] = pd.to_numeric(page_sizes_df['image_width'], errors='coerce')
|
|
page_sizes_df['image_height'] = pd.to_numeric(page_sizes_df['image_height'], errors='coerce')
|
|
|
|
page_sizes_df['page'] = page_sizes_df['page'].astype('Int64')
|
|
|
|
except Exception as e:
|
|
raise ValueError(f"Error processing page_sizes: {e}") from e
|
|
|
|
|
|
|
|
if review_file_df.empty:
|
|
print("Input review_file_df is empty. Proceeding to generate JSON structure with empty boxes.")
|
|
|
|
for col in [xmin, xmax, ymin, ymax, "page", "label", "color", "id", "text"]:
|
|
if col not in review_file_df.columns:
|
|
review_file_df[col] = pd.NA
|
|
else:
|
|
|
|
coord_cols_to_check = [c for c in [xmin, xmax, ymin, ymax] if c in review_file_df.columns]
|
|
needs_multiplication = False
|
|
if coord_cols_to_check:
|
|
temp_df_numeric = review_file_df[coord_cols_to_check].apply(pd.to_numeric, errors='coerce')
|
|
if temp_df_numeric.le(1).any().any():
|
|
needs_multiplication = True
|
|
|
|
if needs_multiplication:
|
|
|
|
review_file_df = multiply_coordinates_by_page_sizes(
|
|
review_file_df.copy(),
|
|
page_sizes_df,
|
|
xmin, xmax, ymin, ymax
|
|
)
|
|
else:
|
|
|
|
|
|
cols_to_convert = [c for c in [xmin, xmax, ymin, ymax, "page"] if c in review_file_df.columns]
|
|
for col in cols_to_convert:
|
|
review_file_df[col] = pd.to_numeric(review_file_df[col], errors='coerce')
|
|
|
|
|
|
if review_file_df.empty:
|
|
print("DataFrame became empty after coordinate processing.")
|
|
|
|
for col in [xmin, xmax, ymin, ymax, "page", "label", "color", "id", "text"]:
|
|
if col not in review_file_df.columns:
|
|
review_file_df[col] = pd.NA
|
|
|
|
|
|
review_file_df = fill_missing_ids(review_file_df.copy())
|
|
|
|
|
|
base_dedupe_cols = ["page", xmin, ymin, xmax, ymax, "label", "id"]
|
|
|
|
cols_for_dedupe = [col for col in base_dedupe_cols if col in review_file_df.columns]
|
|
|
|
if "image" in review_file_df.columns:
|
|
cols_for_dedupe.append("image")
|
|
|
|
|
|
|
|
for col in ['label', 'id']:
|
|
if col in cols_for_dedupe and col not in review_file_df.columns:
|
|
|
|
print(f"Warning: Column '{col}' needed for dedupe but not found. Adding NA.")
|
|
review_file_df[col] = ""
|
|
|
|
if cols_for_dedupe:
|
|
|
|
|
|
|
|
|
|
review_file_df = review_file_df.drop_duplicates(subset=cols_for_dedupe)
|
|
else:
|
|
print("Skipping deduplication: No valid columns found to deduplicate by.")
|
|
|
|
|
|
|
|
required_final_cols = ["page", "label", "color", xmin, ymin, xmax, ymax, "id", "text"]
|
|
|
|
available_final_cols = [col for col in required_final_cols if col in review_file_df.columns]
|
|
|
|
|
|
for col in required_final_cols:
|
|
if col not in review_file_df.columns:
|
|
print(f"Adding missing final column '{col}' with default value.")
|
|
if col in ['label', 'id', 'text']:
|
|
review_file_df[col] = ""
|
|
elif col == 'color':
|
|
review_file_df[col] = None
|
|
else:
|
|
review_file_df[col] = pd.NA
|
|
available_final_cols.append(col)
|
|
|
|
|
|
review_file_df = review_file_df[available_final_cols]
|
|
|
|
|
|
if not review_file_df.empty:
|
|
|
|
if 'color' in review_file_df.columns:
|
|
review_file_df['color'] = review_file_df['color'].apply(
|
|
lambda x: tuple(x) if isinstance(x, list) else x
|
|
)
|
|
|
|
if 'page' in review_file_df.columns:
|
|
review_file_df['page'] = review_file_df['page'].astype('Int64')
|
|
|
|
|
|
if 'page' in review_file_df.columns:
|
|
grouped_annotations = review_file_df.groupby('page')
|
|
group_keys = set(grouped_annotations.groups.keys())
|
|
else:
|
|
|
|
print("Error: 'page' column missing, cannot group annotations.")
|
|
grouped_annotations = None
|
|
group_keys = set()
|
|
|
|
|
|
|
|
json_data = []
|
|
output_cols_for_boxes = [col for col in ["label", "color", xmin, ymin, xmax, ymax, "id", "text"] if col in review_file_df.columns]
|
|
|
|
|
|
for _, row in page_sizes_df.iterrows():
|
|
page_num = row['page']
|
|
pdf_image_path = row['image_path']
|
|
annotation_boxes = []
|
|
|
|
|
|
|
|
if pd.notna(page_num) and page_num in group_keys and grouped_annotations:
|
|
try:
|
|
page_group_df = grouped_annotations.get_group(page_num)
|
|
|
|
|
|
annotation_boxes = page_group_df[output_cols_for_boxes].replace({np.nan: None}).to_dict(orient='records')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
except KeyError:
|
|
print(f"Warning: Group key {page_num} not found despite being in group_keys (should not happen).")
|
|
annotation_boxes = []
|
|
|
|
|
|
json_data.append({
|
|
"image": pdf_image_path,
|
|
"boxes": annotation_boxes
|
|
})
|
|
|
|
return json_data
|
|
|