File size: 98,849 Bytes
43287c3
6319afc
a680619
641ff3e
e2aae24
34addbf
6ea0852
0ea8b9e
eea5c07
0ea8b9e
a770956
66e145d
0ea8b9e
 
e5dfae7
43287c3
0ea8b9e
9504619
66e145d
 
 
52c1a90
 
93b4c8a
641ff3e
0ea8b9e
 
 
 
 
6319afc
0ea8b9e
6319afc
 
 
 
 
ec98119
37d982e
 
 
 
 
 
 
 
 
 
0f18146
37d982e
 
 
 
 
641ff3e
 
 
 
 
 
 
 
 
 
 
 
 
 
66e145d
 
 
 
 
0ea8b9e
 
 
66e145d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
 
 
 
66e145d
0ea8b9e
143e2cc
0ea8b9e
 
 
143e2cc
0ea8b9e
 
 
 
 
 
0c2987b
0ea8b9e
 
 
 
 
 
 
 
 
143e2cc
0ea8b9e
 
 
 
143e2cc
0ea8b9e
43287c3
0ea8b9e
 
 
f0c28d7
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
f0c28d7
 
0ea8b9e
 
f0c28d7
 
 
 
 
0ea8b9e
 
 
f0c28d7
 
 
0ea8b9e
 
9504619
0ea8b9e
 
 
 
f0c28d7
 
0ea8b9e
9504619
f0c28d7
 
 
66e145d
 
f0c28d7
ed5f8c7
0ea8b9e
641ff3e
e2aae24
0ea8b9e
641ff3e
 
66e145d
641ff3e
37d982e
641ff3e
 
cb349ad
66e145d
 
 
0ea8b9e
 
 
 
 
 
 
 
641ff3e
 
 
ed5f8c7
0ea8b9e
641ff3e
0ea8b9e
641ff3e
 
 
0ea8b9e
66e145d
 
0ea8b9e
641ff3e
0ea8b9e
7810536
1d772de
8652429
 
 
 
 
e2aae24
 
0ea8b9e
8652429
e5dfae7
 
ebf9010
eea5c07
 
e2aae24
 
eea5c07
 
 
 
 
 
 
bde6e5b
8652429
 
 
0ea8b9e
4276db1
8652429
e2aae24
 
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
8652429
 
 
0ea8b9e
1d772de
 
 
 
 
0ea8b9e
 
 
 
1d772de
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3a8cd7
 
 
 
1d772de
 
 
 
 
0ea8b9e
1d772de
 
760ef5c
1d772de
760ef5c
 
 
 
1d772de
760ef5c
1d772de
 
 
 
760ef5c
0ea8b9e
 
 
 
 
 
1d772de
760ef5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1d772de
760ef5c
 
1d772de
760ef5c
 
 
 
 
 
 
 
 
 
 
 
 
1d772de
 
 
0ea8b9e
1d772de
 
 
 
 
 
0ea8b9e
1d772de
 
 
 
 
 
0ea8b9e
 
 
 
1d772de
 
 
 
 
 
8652429
0ea8b9e
6319afc
 
 
 
 
 
 
 
 
ed5f8c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6319afc
ed5f8c7
 
6319afc
 
 
 
 
8652429
8c33828
 
 
 
 
ed5f8c7
e2aae24
 
1d772de
0ea8b9e
 
6319afc
0ea8b9e
f93e49c
 
8c33828
 
 
 
 
 
 
 
 
 
 
1d772de
 
 
 
 
 
 
66e145d
0ea8b9e
 
f93e49c
 
66e145d
e2aae24
8c33828
 
 
 
0f18146
34addbf
a770956
08a3ec3
6319afc
 
 
0ea8b9e
6319afc
4276db1
ed5f8c7
 
 
34addbf
1d772de
66e145d
 
1d772de
8c33828
 
 
e2aae24
 
8c33828
0ea8b9e
 
ed5f8c7
0ea8b9e
eea5c07
0ea8b9e
01c88c0
0ea8b9e
e5dfae7
0ea8b9e
 
01c88c0
 
 
 
eea5c07
01c88c0
e9c4101
 
 
 
f93e49c
7810536
8652429
 
eea5c07
 
 
 
ed5f8c7
 
 
e2aae24
01c88c0
1d772de
 
 
eea5c07
 
 
 
bde6e5b
cb349ad
7810536
e2aae24
 
 
08a3ec3
 
230fcc3
 
1d772de
 
 
6319afc
1d772de
 
66e145d
6319afc
0ea8b9e
6319afc
0ea8b9e
 
 
1d772de
59ff822
 
1d772de
 
 
 
 
6319afc
1d772de
 
 
 
11770c9
 
 
 
1d772de
 
 
 
 
66e145d
 
 
 
11770c9
 
0ea8b9e
 
66e145d
0ea8b9e
cb349ad
 
e5dfae7
0ea8b9e
e2aae24
1d772de
4276db1
 
 
 
93b4c8a
4276db1
 
 
 
 
ed5f8c7
 
a770956
e2aae24
a770956
e2aae24
 
 
 
 
 
 
f93e49c
 
ed5f8c7
66e145d
ed5f8c7
 
 
 
 
66e145d
 
0ea8b9e
4276db1
a770956
 
f93e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
4276db1
a770956
 
 
e2aae24
 
 
 
 
 
 
 
f0c28d7
e2aae24
1d772de
f0c28d7
1d772de
 
 
 
 
 
760ef5c
 
 
 
 
 
 
 
 
e2aae24
 
 
 
 
 
 
 
f0c28d7
e2aae24
1d772de
0ea8b9e
 
 
1d772de
 
0ea8b9e
 
1d772de
0ea8b9e
 
 
 
 
1d772de
0ea8b9e
e2aae24
 
a770956
0ea8b9e
 
e2aae24
 
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4276db1
 
 
1d772de
f0c28d7
 
 
 
 
08a3ec3
f0c28d7
 
 
 
 
0ea8b9e
e2aae24
1d772de
 
e2aae24
34addbf
 
 
 
 
 
ed5f8c7
eea5c07
ed5f8c7
e2aae24
f93e49c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f18146
0ea8b9e
bde6e5b
0f18146
2807627
0f18146
0ea8b9e
 
7810536
ec98119
0f18146
7810536
 
 
 
0f18146
ebf9010
a770956
6319afc
c9e23cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a770956
0ea8b9e
143e2cc
0ea8b9e
143e2cc
0ea8b9e
 
 
 
 
 
 
 
 
 
 
52c1a90
 
 
 
0ea8b9e
 
 
 
a770956
0ea8b9e
 
a770956
0ea8b9e
1d772de
93b4c8a
 
 
 
 
 
 
66e145d
93b4c8a
 
66e145d
93b4c8a
 
 
 
 
66e145d
93b4c8a
 
 
 
 
66e145d
93b4c8a
 
 
 
66e145d
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e145d
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ea8b9e
93b4c8a
143e2cc
a770956
93b4c8a
 
66e145d
93b4c8a
 
 
 
 
 
66e145d
 
93b4c8a
 
 
 
 
 
 
 
 
66e145d
52c1a90
93b4c8a
 
 
 
52c1a90
93b4c8a
66e145d
93b4c8a
 
 
 
 
 
 
66e145d
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66e145d
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143e2cc
93b4c8a
 
 
 
0ea8b9e
93b4c8a
 
 
0ea8b9e
93b4c8a
 
 
 
0ea8b9e
 
93b4c8a
 
 
0ea8b9e
93b4c8a
 
0ea8b9e
93b4c8a
0ea8b9e
93b4c8a
 
 
 
 
0ea8b9e
93b4c8a
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1a90
 
 
 
 
 
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1a90
 
0ea8b9e
 
 
 
 
f6e6d80
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
143e2cc
66e145d
0ea8b9e
66e145d
143e2cc
66e145d
 
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a03496e
0ea8b9e
 
 
 
 
 
52c1a90
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1a90
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b4c8a
0ea8b9e
 
 
36f8e9f
0ea8b9e
93b4c8a
0ea8b9e
 
 
 
 
 
 
36f8e9f
 
f93e49c
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4276db1
0ea8b9e
 
 
 
52c1a90
0ea8b9e
 
52c1a90
93b4c8a
 
52c1a90
0ea8b9e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b4c8a
 
 
 
 
 
0ea8b9e
52c1a90
 
 
93b4c8a
 
 
0ea8b9e
 
52c1a90
 
0ea8b9e
93b4c8a
 
 
52c1a90
 
 
 
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1a90
 
93b4c8a
 
 
 
 
52c1a90
93b4c8a
 
 
 
 
 
 
52c1a90
 
 
93b4c8a
 
52c1a90
93b4c8a
 
 
 
 
 
52c1a90
 
 
 
93b4c8a
52c1a90
93b4c8a
 
52c1a90
 
 
93b4c8a
52c1a90
 
 
 
 
 
 
93b4c8a
 
 
 
52c1a90
 
 
 
 
93b4c8a
52c1a90
 
93b4c8a
 
 
 
 
 
 
 
 
 
 
52c1a90
93b4c8a
52c1a90
93b4c8a
52c1a90
93b4c8a
52c1a90
 
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52c1a90
93b4c8a
 
 
52c1a90
93b4c8a
 
66e145d
93b4c8a
 
 
a03496e
52c1a90
93b4c8a
 
 
bde6e5b
52c1a90
93b4c8a
52c1a90
93b4c8a
 
 
a03496e
52c1a90
 
93b4c8a
52c1a90
93b4c8a
 
 
 
 
 
 
 
 
 
f93e49c
 
 
66e145d
 
52c1a90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93b4c8a
 
52c1a90
 
 
 
 
 
 
 
 
93b4c8a
52c1a90
 
 
 
 
 
 
 
 
 
 
93b4c8a
52c1a90
 
93b4c8a
 
 
 
 
 
52c1a90
 
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
52c1a90
 
 
 
 
93b4c8a
 
 
 
 
 
 
52c1a90
 
 
 
 
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
52c1a90
 
 
 
 
 
 
 
 
93b4c8a
 
 
 
52c1a90
 
 
 
 
 
93b4c8a
52c1a90
 
 
 
 
93b4c8a
 
52c1a90
93b4c8a
 
 
52c1a90
 
 
 
93b4c8a
 
 
 
52c1a90
93b4c8a
 
 
 
52c1a90
 
 
93b4c8a
 
 
 
 
 
 
 
66e145d
93b4c8a
 
52c1a90
93b4c8a
 
 
 
 
 
 
66e145d
93b4c8a
 
 
f93e49c
 
93b4c8a
 
a770956
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
a770956
93b4c8a
 
613b1b4
 
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613b1b4
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613b1b4
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
613b1b4
93b4c8a
 
 
a770956
93b4c8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
from pdf2image import convert_from_path, pdfinfo_from_path

from PIL import Image, ImageFile
import os
import re
import time
import json
import numpy as np
import pymupdf
from pymupdf import Document, Page, Rect
import pandas as pd
import shutil
import zipfile
from collections import defaultdict
from tqdm import tqdm
from gradio import Progress
from typing import List, Optional, Dict, Any
from concurrent.futures import ThreadPoolExecutor, as_completed
from pdf2image import convert_from_path
from PIL import Image
from scipy.spatial import cKDTree
import random
import string
import warnings # To warn about potential type changes

IMAGE_NUM_REGEX = re.compile(r'_(\d+)\.png$')

pd.set_option('future.no_silent_downcasting', True)

from tools.config import OUTPUT_FOLDER, INPUT_FOLDER, IMAGES_DPI, LOAD_TRUNCATED_IMAGES, MAX_IMAGE_PIXELS, CUSTOM_BOX_COLOUR
from tools.helper_functions import get_file_name_without_type, tesseract_ocr_option, text_ocr_option, textract_option, read_file
# from tools.aws_textract import load_and_convert_textract_json

image_dpi = float(IMAGES_DPI)
if not MAX_IMAGE_PIXELS: Image.MAX_IMAGE_PIXELS = None
else: Image.MAX_IMAGE_PIXELS = MAX_IMAGE_PIXELS
ImageFile.LOAD_TRUNCATED_IMAGES = LOAD_TRUNCATED_IMAGES.lower() == "true"

def is_pdf_or_image(filename):
    """

    Check if a file name is a PDF or an image file.



    Args:

        filename (str): The name of the file.



    Returns:

        bool: True if the file name ends with ".pdf", ".jpg", or ".png", False otherwise.

    """
    if filename.lower().endswith(".pdf") or filename.lower().endswith(".jpg") or filename.lower().endswith(".jpeg") or filename.lower().endswith(".png"):
        output = True
    else:
        output = False
    return output

def is_pdf(filename):
    """

    Check if a file name is a PDF.



    Args:

        filename (str): The name of the file.



    Returns:

        bool: True if the file name ends with ".pdf", False otherwise.

    """
    return filename.lower().endswith(".pdf")

## Convert pdf to image if necessary

def check_image_size_and_reduce(out_path:str, image:Image):
    '''

    Check if a given image size is above around 4.5mb, and reduce size if necessary. 5mb is the maximum possible to submit to AWS Textract.

    '''

    all_img_details = []
    page_num = 0

    # Check file size and resize if necessary
    max_size = 4.5 * 1024 * 1024  # 5 MB in bytes # 5
    file_size = os.path.getsize(out_path)        

    width = image.width
    height = image.height

    # Resize images if they are too big
    if file_size > max_size:
        # Start with the original image size          

        print(f"Image size before {width}x{height}, original file_size: {file_size}")

        while file_size > max_size:
            # Reduce the size by a factor (e.g., 50% of the current size)
            new_width = int(width * 0.5)
            new_height = int(height * 0.5)
            image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
            
            # Save the resized image
            image.save(out_path, format="PNG", optimize=True)
            
            # Update the file size
            file_size = os.path.getsize(out_path)
            print(f"Resized to {new_width}x{new_height}, new file_size: {file_size}")
    else:
        new_width = width
        new_height = height
    
    
    all_img_details.append((page_num, image, new_width, new_height))

    return image, new_width, new_height, all_img_details, out_path

def process_single_page_for_image_conversion(pdf_path:str, page_num:int, image_dpi:float=image_dpi, create_images:bool = True, input_folder: str = INPUT_FOLDER) -> tuple[int, str, float, float]:

    out_path_placeholder = "placeholder_image_" + str(page_num) + ".png"

    if create_images == True:
        try:
            # Construct the full output directory path
            image_output_dir = os.path.join(os.getcwd(), input_folder)
            out_path = os.path.join(image_output_dir, f"{os.path.basename(pdf_path)}_{page_num}.png")
            os.makedirs(os.path.dirname(out_path), exist_ok=True)

            if os.path.exists(out_path):
                # Load existing image
                image = Image.open(out_path)
            elif pdf_path.lower().endswith(".pdf"):
                # Convert PDF page to image
                image_l = convert_from_path(pdf_path, first_page=page_num+1, last_page=page_num+1, 
                                            dpi=image_dpi, use_cropbox=False, use_pdftocairo=False)
                image = image_l[0]
                image = image.convert("L")

                image.save(out_path, format="PNG")
            elif pdf_path.lower().endswith(".jpg") or pdf_path.lower().endswith(".png") or pdf_path.lower().endswith(".jpeg"):
                image = Image.open(pdf_path)
                image.save(out_path, format="PNG")

            width, height = image.size

            # Check if image size too large and reduce if necessary
            #print("Checking size of image and reducing if necessary.")
            image, width, height, all_img_details, img_path = check_image_size_and_reduce(out_path, image)                

            return page_num, out_path, width, height

        except Exception as e:
            print(f"Error processing page {page_num + 1}: {e}")
            return page_num,  out_path_placeholder, pd.NA, pd.NA
    else:
        # print("Not creating image for page", page_num)
        return page_num,  out_path_placeholder, pd.NA, pd.NA

def convert_pdf_to_images(pdf_path: str, prepare_for_review:bool=False, page_min: int = 0, page_max:int = 0, create_images:bool=True, image_dpi: float = image_dpi, num_threads: int = 8, input_folder: str = INPUT_FOLDER):

    # If preparing for review, just load the first page (not currently used)
    if prepare_for_review == True:
        page_count = pdfinfo_from_path(pdf_path)['Pages'] #1
        page_min = 0
        page_max = page_count
    else:
        page_count = pdfinfo_from_path(pdf_path)['Pages']

    print(f"Number of pages in PDF: {page_count}")

    # Set page max to length of pdf if not specified
    if page_max == 0: page_max = page_count

    results = []
    with ThreadPoolExecutor(max_workers=num_threads) as executor:
        futures = []
        for page_num in range(page_min, page_max):
            futures.append(executor.submit(process_single_page_for_image_conversion, pdf_path, page_num, image_dpi, create_images=create_images, input_folder=input_folder))
        
        for future in tqdm(as_completed(futures), total=len(futures), unit="pages", desc="Converting pages to image"):
            page_num, img_path, width, height = future.result()
            if img_path:
                results.append((page_num, img_path, width, height))
            else:
                print(f"Page {page_num + 1} failed to process.")
                results.append((page_num, "placeholder_image_" + str(page_num) + ".png", pd.NA, pd.NA))
    
    # Sort results by page number
    results.sort(key=lambda x: x[0])
    images = [result[1] for result in results]
    widths = [result[2] for result in results]
    heights = [result[3] for result in results]

    #print("PDF has been converted to images.")
    return images, widths, heights, results

# Function to take in a file path, decide if it is an image or pdf, then process appropriately.
def process_file_for_image_creation(file_path:str, prepare_for_review:bool=False, input_folder:str=INPUT_FOLDER, create_images:bool=True):
    # Get the file extension
    file_extension = os.path.splitext(file_path)[1].lower()
 
    # Check if the file is an image type
    if file_extension in ['.jpg', '.jpeg', '.png']:
        print(f"{file_path} is an image file.")
        # Perform image processing here
        img_object = [file_path] #[Image.open(file_path)]

        # Load images from the file paths. Test to see if it is bigger than 4.5 mb and reduct if needed (Textract limit is 5mb)
        image = Image.open(file_path)
        img_object, image_sizes_width, image_sizes_height, all_img_details, img_path = check_image_size_and_reduce(file_path, image)

        if not isinstance(image_sizes_width, list):
            img_path = [img_path]
            image_sizes_width = [image_sizes_width]
            image_sizes_height = [image_sizes_height]
            all_img_details = [all_img_details]
            

    # Check if the file is a PDF
    elif file_extension == '.pdf':
        # print(f"{file_path} is a PDF file. Converting to image set")

        # Run your function for processing PDF files here
        img_path, image_sizes_width, image_sizes_height, all_img_details = convert_pdf_to_images(file_path, prepare_for_review, input_folder=input_folder, create_images=create_images)

    else:
        print(f"{file_path} is not an image or PDF file.")
        img_path = []
        image_sizes_width = []
        image_sizes_height = []
        all_img_details = []

    return img_path, image_sizes_width, image_sizes_height, all_img_details

def get_input_file_names(file_input:List[str]):
    '''

    Get list of input files to report to logs.

    '''

    all_relevant_files = []
    file_name_with_extension = ""
    full_file_name = ""
    total_pdf_page_count = 0

    if isinstance(file_input, dict):
        file_input = os.path.abspath(file_input["name"])

    if isinstance(file_input, str):
        file_input_list = [file_input]
    else:
        file_input_list = file_input

    for file in file_input_list:
        if isinstance(file, str):
            file_path = file
        else:
            file_path = file.name

        file_path_without_ext = get_file_name_without_type(file_path)

        file_extension = os.path.splitext(file_path)[1].lower()

        # Check if the file is in acceptable types
        if (file_extension in ['.jpg', '.jpeg', '.png', '.pdf', '.xlsx', '.csv', '.parquet']) & ("review_file" not in file_path_without_ext) & ("ocr_output" not in file_path_without_ext):
            all_relevant_files.append(file_path_without_ext)
            file_name_with_extension = file_path_without_ext + file_extension
            full_file_name = file_path

        # If PDF, get number of pages
        if (file_extension in ['.pdf']):
            # Open the PDF file
            pdf_document = pymupdf.open(file_path)
            # Get the number of pages
            page_count = pdf_document.page_count
            
            # Close the document
            pdf_document.close()
        else:
            page_count = 1

        total_pdf_page_count += page_count
    
    all_relevant_files_str = ", ".join(all_relevant_files)

    return all_relevant_files_str, file_name_with_extension, full_file_name, all_relevant_files, total_pdf_page_count

def convert_color_to_range_0_1(color):
    return tuple(component / 255 for component in color)

def redact_single_box(pymupdf_page:Page, pymupdf_rect:Rect, img_annotation_box:dict, custom_colours:bool=False):
    '''

    Commit redaction boxes to a PyMuPDF page.

    '''

    pymupdf_x1 = pymupdf_rect[0]
    pymupdf_y1 = pymupdf_rect[1]
    pymupdf_x2 = pymupdf_rect[2]
    pymupdf_y2 = pymupdf_rect[3]

    # Calculate area to actually remove text from the pdf (different from black box size)     
    redact_bottom_y = pymupdf_y1 + 2
    redact_top_y = pymupdf_y2 - 2

    # Calculate the middle y value and set a small height if default values are too close together
    if (redact_top_y - redact_bottom_y) < 1:        
        middle_y = (pymupdf_y1 + pymupdf_y2) / 2
        redact_bottom_y = middle_y - 1
        redact_top_y = middle_y + 1


    rect_small_pixel_height = Rect(pymupdf_x1, redact_bottom_y, pymupdf_x2, redact_top_y)  # Slightly smaller than outside box

    # Add the annotation to the middle of the character line, so that it doesn't delete text from adjacent lines
    #page.add_redact_annot(rect)#rect_small_pixel_height)
    pymupdf_page.add_redact_annot(rect_small_pixel_height)

    # Set up drawing a black box over the whole rect
    shape = pymupdf_page.new_shape()
    shape.draw_rect(pymupdf_rect)

    if custom_colours == True:
        if img_annotation_box["color"][0] > 1:
            out_colour = convert_color_to_range_0_1(img_annotation_box["color"])
        else:
            out_colour = img_annotation_box["color"]
    else:
        if CUSTOM_BOX_COLOUR == "grey":
            out_colour = (0.5, 0.5, 0.5)        
        else:
            out_colour = (0,0,0)

    shape.finish(color=out_colour, fill=out_colour)  # Black fill for the rectangle
    #shape.finish(color=(0, 0, 0))  # Black fill for the rectangle
    shape.commit()

def convert_pymupdf_to_image_coords(pymupdf_page:Page, x1:float, y1:float, x2:float, y2:float, image: Image=None, image_dimensions:dict={}):
    '''

    Converts coordinates from pymupdf format to image coordinates,

    accounting for mediabox dimensions and offset.

    '''
    # Get rect dimensions
    rect = pymupdf_page.rect
    rect_width = rect.width
    rect_height = rect.height
    
    # Get mediabox dimensions and position
    mediabox = pymupdf_page.mediabox
    mediabox_width = mediabox.width
    mediabox_height = mediabox.height
    
    # Get target image dimensions
    if image:
        image_page_width, image_page_height = image.size
    elif image_dimensions:
        image_page_width, image_page_height = image_dimensions['image_width'], image_dimensions['image_height']
    else:
        image_page_width, image_page_height = mediabox_width, mediabox_height

    # Calculate scaling factors
    image_to_mediabox_x_scale = image_page_width / mediabox_width
    image_to_mediabox_y_scale = image_page_height / mediabox_height

    # Adjust coordinates:
    # Apply scaling to match image dimensions
    x1_image = x1 * image_to_mediabox_x_scale    
    x2_image = x2 * image_to_mediabox_x_scale
    y1_image = y1 * image_to_mediabox_y_scale
    y2_image = y2 * image_to_mediabox_y_scale

    # Correct for difference in rect and mediabox size
    if mediabox_width != rect_width:
        
        mediabox_to_rect_x_scale = mediabox_width / rect_width
        mediabox_to_rect_y_scale = mediabox_height / rect_height

        rect_to_mediabox_x_scale = rect_width / mediabox_width
        #rect_to_mediabox_y_scale = rect_height / mediabox_height

        mediabox_rect_x_diff = (mediabox_width - rect_width) * (image_to_mediabox_x_scale / 2)
        mediabox_rect_y_diff = (mediabox_height - rect_height) * (image_to_mediabox_y_scale / 2)

        x1_image -= mediabox_rect_x_diff
        x2_image -= mediabox_rect_x_diff
        y1_image += mediabox_rect_y_diff
        y2_image += mediabox_rect_y_diff

        #
        x1_image *= mediabox_to_rect_x_scale
        x2_image *= mediabox_to_rect_x_scale
        y1_image *= mediabox_to_rect_y_scale
        y2_image *= mediabox_to_rect_y_scale

    return x1_image, y1_image, x2_image, y2_image

def redact_whole_pymupdf_page(rect_height:float, rect_width:float, image:Image, page:Page, custom_colours, border:float = 5, image_dimensions:dict={}):
    # Small border to page that remains white
    border = 5
    # Define the coordinates for the Rect
    whole_page_x1, whole_page_y1 = 0 + border, 0 + border  # Bottom-left corner
    whole_page_x2, whole_page_y2 = rect_width - border, rect_height - border  # Top-right corner

    # whole_page_image_x1, whole_page_image_y1, whole_page_image_x2, whole_page_image_y2 = convert_pymupdf_to_image_coords(page, whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2, image, image_dimensions=image_dimensions)

    # Create new image annotation element based on whole page coordinates
    whole_page_rect = Rect(whole_page_x1, whole_page_y1, whole_page_x2, whole_page_y2)

    # Write whole page annotation to annotation boxes
    whole_page_img_annotation_box = {}
    whole_page_img_annotation_box["xmin"] = whole_page_x1 #whole_page_image_x1
    whole_page_img_annotation_box["ymin"] = whole_page_y1 #whole_page_image_y1
    whole_page_img_annotation_box["xmax"] = whole_page_x2 #whole_page_image_x2
    whole_page_img_annotation_box["ymax"] =  whole_page_y2 #whole_page_image_y2
    whole_page_img_annotation_box["color"] = (0,0,0)
    whole_page_img_annotation_box["label"] = "Whole page"

    redact_single_box(page, whole_page_rect, whole_page_img_annotation_box, custom_colours)

    return whole_page_img_annotation_box

def create_page_size_objects(pymupdf_doc:Document, image_sizes_width:List[float], image_sizes_height:List[float], image_file_paths:List[str]):
    page_sizes = []
    original_cropboxes = []

    for page_no, page in enumerate(pymupdf_doc):
        reported_page_no = page_no + 1
        
        pymupdf_page = pymupdf_doc.load_page(page_no)
        original_cropboxes.append(pymupdf_page.cropbox)  # Save original CropBox

        # Create a page_sizes_object. If images have been created, then image width an height come from this value. Otherwise, they are set to the cropbox size        
        out_page_image_sizes = {
            "page":reported_page_no,                                            
            "mediabox_width":pymupdf_page.mediabox.width,
            "mediabox_height": pymupdf_page.mediabox.height,
            "cropbox_width":pymupdf_page.cropbox.width,
            "cropbox_height":pymupdf_page.cropbox.height,
            "original_cropbox":original_cropboxes[-1],
            "image_path":image_file_paths[page_no]}
        
        # cropbox_x_offset: Distance from MediaBox left edge to CropBox left edge
        # This is simply the difference in their x0 coordinates.
        out_page_image_sizes['cropbox_x_offset'] = pymupdf_page.cropbox.x0 - pymupdf_page.mediabox.x0

        # cropbox_y_offset_from_top: Distance from MediaBox top edge to CropBox top edge
        # MediaBox top y = mediabox.y1
        # CropBox top y = cropbox.y1
        # The difference is mediabox.y1 - cropbox.y1
        out_page_image_sizes['cropbox_y_offset_from_top'] = pymupdf_page.mediabox.y1 - pymupdf_page.cropbox.y1
        
        if image_sizes_width and image_sizes_height:
            out_page_image_sizes["image_width"] = image_sizes_width[page_no]
            out_page_image_sizes["image_height"] = image_sizes_height[page_no]        
        
        page_sizes.append(out_page_image_sizes)

    return page_sizes, original_cropboxes

def prepare_image_or_pdf(

    file_paths: List[str],

    in_redact_method: str,

    latest_file_completed: int = 0,

    out_message: List[str] = [],

    first_loop_state: bool = False,

    number_of_pages:int = 0,

    all_annotations_object:List = [],

    prepare_for_review:bool = False,

    in_fully_redacted_list:List[int]=[],

    output_folder:str=OUTPUT_FOLDER,

    input_folder:str=INPUT_FOLDER,

    prepare_images:bool=True,

    page_sizes:list[dict]=[],

    textract_output_found:bool = False,

    local_ocr_output_found:bool = False,   

    progress: Progress = Progress(track_tqdm=True)

) -> tuple[List[str], List[str]]:
    """

    Prepare and process image or text PDF files for redaction.



    This function takes a list of file paths, processes each file based on the specified redaction method,

    and returns the output messages and processed file paths.



    Args:

        file_paths (List[str]): List of file paths to process.

        in_redact_method (str): The redaction method to use.

        latest_file_completed (optional, int): Index of the last completed file.

        out_message (optional, List[str]): List to store output messages.

        first_loop_state (optional, bool): Flag indicating if this is the first iteration.

        number_of_pages (optional, int): integer indicating the number of pages in the document

        all_annotations_object(optional, List of annotation objects): All annotations for current document

        prepare_for_review(optional, bool): Is this preparation step preparing pdfs and json files to review current redactions?

        in_fully_redacted_list(optional, List of int): A list of pages to fully redact

        output_folder (optional, str): The output folder for file save

        prepare_images (optional, bool): A boolean indicating whether to create images for each PDF page. Defaults to True.

        page_sizes(optional, List[dict]): A list of dicts containing information about page sizes in various formats.

        textract_output_found (optional, bool): A boolean indicating whether Textract analysis output has already been found. Defaults to False.

        local_ocr_output_found (optional, bool): A boolean indicating whether local OCR analysis output has already been found. Defaults to False.

        progress (optional, Progress): Progress tracker for the operation

        



    Returns:

        tuple[List[str], List[str]]: A tuple containing the output messages and processed file paths.

    """

    tic = time.perf_counter()
    json_from_csv = False
    original_cropboxes = []  # Store original CropBox values
    converted_file_paths = []
    image_file_paths = []
    pymupdf_doc = []
    all_img_details = []    
    review_file_csv = pd.DataFrame()
    all_line_level_ocr_results_df = pd.DataFrame()
    out_textract_path = ""
    combined_out_message = ""
    final_out_message = ""

    if isinstance(in_fully_redacted_list, pd.DataFrame):
        if not in_fully_redacted_list.empty:
            in_fully_redacted_list = in_fully_redacted_list.iloc[:,0].tolist()

    # If this is the first time around, set variables to 0/blank
    if first_loop_state==True:
        latest_file_completed = 0
        out_message = []
        all_annotations_object = []
    else:
        print("Now redacting file", str(latest_file_completed))
  
    # If combined out message or converted_file_paths are blank, change to a list so it can be appended to
    if isinstance(out_message, str): out_message = [out_message]

    if not file_paths: file_paths = []

    if isinstance(file_paths, dict): file_paths = os.path.abspath(file_paths["name"])

    if isinstance(file_paths, str): file_path_number = 1
    else: file_path_number = len(file_paths)
    
    latest_file_completed = int(latest_file_completed)

    # If we have already redacted the last file, return the input out_message and file list to the relevant components
    if latest_file_completed >= file_path_number:
        print("Last file reached, returning files:", str(latest_file_completed))
        if isinstance(out_message, list):
            final_out_message = '\n'.join(out_message)
        else:
            final_out_message = out_message
        return final_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df, local_ocr_output_found

    progress(0.1, desc='Preparing file')

    if isinstance(file_paths, str):
        file_paths_list = [file_paths]
        file_paths_loop = file_paths_list
    else:
        file_paths_list = file_paths
        file_paths_loop = sorted(file_paths_list, key=lambda x: (os.path.splitext(x)[1] != '.pdf', os.path.splitext(x)[1] != '.json')) 
        
    # Loop through files to load in
    for file in file_paths_loop:
        converted_file_path = []
        image_file_path = []

        if isinstance(file, str):
            file_path = file
        else:
            file_path = file.name
        file_path_without_ext = get_file_name_without_type(file_path)
        file_name_with_ext = os.path.basename(file_path)

        if not file_path:
            out_message = "Please select a file."
            print(out_message)
            raise Exception(out_message)
            
        file_extension = os.path.splitext(file_path)[1].lower()

        # If a pdf, load as a pymupdf document
        if is_pdf(file_path):
            pymupdf_doc = pymupdf.open(file_path)
            pymupdf_pages = pymupdf_doc.page_count

            converted_file_path = file_path

            if prepare_images==True:
                image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path, prepare_for_review, input_folder, create_images=True)
            else:
                image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path, prepare_for_review, input_folder, create_images=False)
            
            page_sizes, original_cropboxes = create_page_size_objects(pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths)

            #Create base version of the annotation object that doesn't have any annotations in it
            if (not all_annotations_object) & (prepare_for_review == True):
                all_annotations_object = []

                for image_path in image_file_paths:
                    annotation = {}
                    annotation["image"] = image_path
                    annotation["boxes"] = []

                    all_annotations_object.append(annotation)
            
        elif is_pdf_or_image(file_path):  # Alternatively, if it's an image
            # Check if the file is an image type and the user selected text ocr option
            if file_extension in ['.jpg', '.jpeg', '.png'] and in_redact_method == text_ocr_option:
                in_redact_method = tesseract_ocr_option

            # Convert image to a pymupdf document
            pymupdf_doc = pymupdf.open()  # Create a new empty document

            img = Image.open(file_path)  # Open the image file
            rect = pymupdf.Rect(0, 0, img.width, img.height)  # Create a rectangle for the image
            pymupdf_page = pymupdf_doc.new_page(width=img.width, height=img.height)  # Add a new page
            pymupdf_page.insert_image(rect, filename=file_path)  # Insert the image into the page
            pymupdf_page = pymupdf_doc.load_page(0)

            file_path_str = str(file_path)

            image_file_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(file_path_str, prepare_for_review, input_folder, create_images=True)

            # Create a page_sizes_object
            page_sizes, original_cropboxes = create_page_size_objects(pymupdf_doc, image_sizes_width, image_sizes_height, image_file_paths)

            converted_file_path = output_folder + file_name_with_ext

            pymupdf_doc.save(converted_file_path, garbage=4, deflate=True, clean=True)

        elif file_extension in ['.csv']:
            if '_review_file' in file_path_without_ext:
                review_file_csv = read_file(file_path)
                all_annotations_object = convert_review_df_to_annotation_json(review_file_csv, image_file_paths, page_sizes)
                json_from_csv = True
                #print("Converted CSV review file to image annotation object")
            elif '_ocr_output' in file_path_without_ext:
                all_line_level_ocr_results_df = read_file(file_path)
                json_from_csv = False

        # NEW IF STATEMENT
        # If the file name ends with .json, check if we are loading for review. If yes, assume it is an annoations object, overwrite the current annotations object. If false, assume this is a Textract object, load in to Textract

        if (file_extension in ['.json']) | (json_from_csv == True):

            if (file_extension in ['.json']) &  (prepare_for_review == True):
                if isinstance(file_path, str):
                    with open(file_path, 'r') as json_file:
                        all_annotations_object = json.load(json_file)
                else:
                    # Assuming file_path is a NamedString or similar
                    all_annotations_object = json.loads(file_path)  # Use loads for string content

            # Save Textract file to folder
            elif (file_extension in ['.json']) and '_textract' in file_path_without_ext: #(prepare_for_review != True):
                print("Saving Textract output")
                # Copy it to the output folder so it can be used later.
                output_textract_json_file_name = file_path_without_ext
                if not file_path.endswith("_textract.json"): output_textract_json_file_name = file_path_without_ext + "_textract.json"
                else: output_textract_json_file_name = file_path_without_ext + ".json"

                out_textract_path = os.path.join(output_folder, output_textract_json_file_name)

                # Use shutil to copy the file directly
                shutil.copy2(file_path, out_textract_path)  # Preserves metadata
                textract_output_found = True                
                continue

            elif (file_extension in ['.json']) and '_ocr_results_with_words' in file_path_without_ext: #(prepare_for_review != True):
                print("Saving local OCR output")
                # Copy it to the output folder so it can be used later.
                output_ocr_results_with_words_json_file_name = file_path_without_ext
                if not file_path.endswith("_ocr_results_with_words.json"): output_ocr_results_with_words_json_file_name = file_path_without_ext + "_ocr_results_with_words.json"
                else: output_ocr_results_with_words_json_file_name = file_path_without_ext + ".json"

                out_ocr_results_with_words_path = os.path.join(output_folder, output_ocr_results_with_words_json_file_name)

                # Use shutil to copy the file directly
                shutil.copy2(file_path, out_ocr_results_with_words_path)  # Preserves metadata
                local_ocr_output_found = True                
                continue

            # NEW IF STATEMENT
            # If you have an annotations object from the above code
            if all_annotations_object:

                # Get list of page numbers
                image_file_paths_pages = [
                int(re.search(r'_(\d+)\.png$', os.path.basename(s)).group(1)) 
                for s in image_file_paths 
                if re.search(r'_(\d+)\.png$', os.path.basename(s))
                ]
                image_file_paths_pages = [int(i) for i in image_file_paths_pages]
                
                # If PDF pages have been converted to image files, replace the current image paths in the json to this. 
                if image_file_paths:
                    for i, image_file_path in enumerate(image_file_paths):

                        if i < len(all_annotations_object): 
                            annotation = all_annotations_object[i]
                        else: 
                            annotation = {}
                            all_annotations_object.append(annotation)

                        try:
                            if not annotation:
                                annotation = {"image":"", "boxes": []}
                                annotation_page_number = int(re.search(r'_(\d+)\.png$', image_file_path).group(1))
                            else:
                                annotation_page_number = int(re.search(r'_(\d+)\.png$', annotation["image"]).group(1))
                        except Exception as e:
                            print("Extracting page number from image failed due to:", e)
                            annotation_page_number = 0

                        # Check if the annotation page number exists in the image file paths pages
                        if annotation_page_number in image_file_paths_pages:

                            # Set the correct image page directly since we know it's in the list
                            correct_image_page = annotation_page_number
                            annotation["image"] = image_file_paths[correct_image_page]
                        else:
                            print("Page", annotation_page_number, "image file not found.")

                        all_annotations_object[i] = annotation
                
                if isinstance(in_fully_redacted_list, list):
                    in_fully_redacted_list = pd.DataFrame(data={"fully_redacted_pages_list":in_fully_redacted_list})

                # Get list of pages that are to be fully redacted and redact them
                if not in_fully_redacted_list.empty:
                    print("Redacting whole pages")

                    for i, image in enumerate(image_file_paths):
                        page = pymupdf_doc.load_page(i)
                        rect_height = page.rect.height
                        rect_width = page.rect.width 
                        whole_page_img_annotation_box = redact_whole_pymupdf_page(rect_height, rect_width, image, page, custom_colours = False, border = 5, image_dimensions={"image_width":image_sizes_width[i], "image_height":image_sizes_height[i]})

                        all_annotations_object.append(whole_page_img_annotation_box)

                # Write the response to a JSON file in output folder
                out_folder = output_folder + file_path_without_ext + ".json"
                # with open(out_folder, 'w') as json_file:
                #     json.dump(all_annotations_object, json_file, separators=(",", ":"))
                continue

        # If it's a zip, it could be extract from a Textract bulk API call. Check it's this, and load in json if found
        elif file_extension in ['.zip']:

            # Assume it's a Textract response object. Copy it to the output folder so it can be used later.
            out_folder = os.path.join(output_folder, file_path_without_ext + "_textract.json")

            # Use shutil to copy the file directly
            # Open the ZIP file to check its contents
            with zipfile.ZipFile(file_path, 'r') as zip_ref:
                json_files = [f for f in zip_ref.namelist() if f.lower().endswith('.json')]

                if len(json_files) == 1:  # Ensure only one JSON file exists
                    json_filename = json_files[0]

                    # Extract the JSON file to the same directory as the ZIP file
                    extracted_path = os.path.join(os.path.dirname(file_path), json_filename)
                    zip_ref.extract(json_filename, os.path.dirname(file_path))

                    # Move the extracted JSON to the intended output location
                    shutil.move(extracted_path, out_folder)

                    textract_output_found = True
                else:
                    print(f"Skipping {file_path}: Expected 1 JSON file, found {len(json_files)}")

        elif file_extension in ['.csv'] and "ocr_output" in file_path:
            continue

        # Must be something else, return with error message
        else:
            if in_redact_method == tesseract_ocr_option or in_redact_method == textract_option:
                if is_pdf_or_image(file_path) == False:
                    out_message = "Please upload a PDF file or image file (JPG, PNG) for image analysis."
                    print(out_message)
                    raise Exception(out_message)

            elif in_redact_method == text_ocr_option:
                if is_pdf(file_path) == False:
                    out_message = "Please upload a PDF file for text analysis."
                    print(out_message)
                    raise Exception(out_message)

        converted_file_paths.append(converted_file_path)
        image_file_paths.extend(image_file_path)        

        toc = time.perf_counter()
        out_time = f"File '{file_path_without_ext}' prepared in {toc - tic:0.1f} seconds."

        print(out_time)

        out_message.append(out_time)
        combined_out_message = '\n'.join(out_message)

    number_of_pages = len(page_sizes)#len(image_file_paths)
        
    return combined_out_message, converted_file_paths, image_file_paths, number_of_pages, number_of_pages, pymupdf_doc, all_annotations_object, review_file_csv, original_cropboxes, page_sizes, textract_output_found, all_img_details, all_line_level_ocr_results_df, local_ocr_output_found

def load_and_convert_ocr_results_with_words_json(ocr_results_with_words_json_file_path:str, log_files_output_paths:str, page_sizes_df:pd.DataFrame):
    """

    Loads Textract JSON from a file, detects if conversion is needed, and converts if necessary.

    """
    
    if not os.path.exists(ocr_results_with_words_json_file_path):
        print("No existing OCR results file found.")
        return [], True, log_files_output_paths  # Return empty dict and flag indicating missing file
    
    no_ocr_results_with_words_file = False
    print("Found existing OCR results json results file.")

    # Track log files
    if ocr_results_with_words_json_file_path not in log_files_output_paths:
        log_files_output_paths.append(ocr_results_with_words_json_file_path)

    try:
        with open(ocr_results_with_words_json_file_path, 'r', encoding='utf-8') as json_file:
            ocr_results_with_words_data = json.load(json_file)
    except json.JSONDecodeError:
        print("Error: Failed to parse OCR results JSON file. Returning empty data.")
        return [], True, log_files_output_paths  # Indicate failure

    # Check if conversion is needed
    if "page" and "results" in ocr_results_with_words_data[0]:
        print("JSON already in the correct format for app. No changes needed.")
        return ocr_results_with_words_data, False, log_files_output_paths  # No conversion required

    else:
        print("Invalid OCR result JSON format: 'page' or 'results' key missing.")
        #print("OCR results with words data:", ocr_results_with_words_data)
        return [], True, log_files_output_paths  # Return empty data if JSON is not recognized

def convert_text_pdf_to_img_pdf(in_file_path:str, out_text_file_path:List[str], image_dpi:float=image_dpi, output_folder:str=OUTPUT_FOLDER, input_folder:str=INPUT_FOLDER):
    file_path_without_ext = get_file_name_without_type(in_file_path)

    out_file_paths = out_text_file_path

    # Convert annotated text pdf back to image to give genuine redactions   
    pdf_text_image_paths, image_sizes_width, image_sizes_height, all_img_details = process_file_for_image_creation(out_file_paths[0], input_folder=input_folder)
    out_text_image_file_path = output_folder + file_path_without_ext + "_text_redacted_as_img.pdf"
    pdf_text_image_paths[0].save(out_text_image_file_path, "PDF" ,resolution=image_dpi, save_all=True, append_images=pdf_text_image_paths[1:])

    out_file_paths = [out_text_image_file_path]

    out_message = "PDF " + file_path_without_ext + " converted to image-based file."
    print(out_message)

    return out_message, out_file_paths

def join_values_within_threshold(df1:pd.DataFrame, df2:pd.DataFrame):
    # Threshold for matching
    threshold = 5

    # Perform a cross join
    df1['key'] = 1
    df2['key'] = 1
    merged = pd.merge(df1, df2, on='key').drop(columns=['key'])

    # Apply conditions for all columns
    conditions = (
        (abs(merged['xmin_x'] - merged['xmin_y']) <= threshold) &
        (abs(merged['xmax_x'] - merged['xmax_y']) <= threshold) &
        (abs(merged['ymin_x'] - merged['ymin_y']) <= threshold) &
        (abs(merged['ymax_x'] - merged['ymax_y']) <= threshold)
    )

    # Filter rows that satisfy all conditions
    filtered = merged[conditions]

    # Drop duplicates if needed (e.g., keep only the first match for each row in df1)
    result = filtered.drop_duplicates(subset=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x'])

    # Merge back into the original DataFrame (if necessary)
    final_df = pd.merge(df1, result, left_on=['xmin', 'xmax', 'ymin', 'ymax'], right_on=['xmin_x', 'xmax_x', 'ymin_x', 'ymax_x'], how='left')

    # Clean up extra columns
    final_df = final_df.drop(columns=['key'])

def remove_duplicate_images_with_blank_boxes(data: List[dict]) -> List[dict]:
    '''

    Remove items from the annotator object where the same page exists twice.

    '''
    # Group items by 'image'
    image_groups = defaultdict(list)
    for item in data:
        image_groups[item['image']].append(item)

    # Process each group to prioritize items with non-empty boxes
    result = []
    for image, items in image_groups.items():
        # Filter items with non-empty boxes
        non_empty_boxes = [item for item in items if item.get('boxes')]

         # Remove 'text' elements from boxes (deprecated)
        #for item in non_empty_boxes:
        #    if 'boxes' in item:
        #        item['boxes'] = [{k: v for k, v in box.items() if k != 'text'} for box in item['boxes']]

        if non_empty_boxes:
            # Keep the first entry with non-empty boxes
            result.append(non_empty_boxes[0])
        else:
            # If all items have empty or missing boxes, keep the first item
            result.append(items[0])

    return result

def divide_coordinates_by_page_sizes(

    review_file_df: pd.DataFrame,

    page_sizes_df: pd.DataFrame,

    xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"

) -> pd.DataFrame:
    """

    Optimized function to convert absolute image coordinates (>1) to relative coordinates (<=1).



    Identifies rows with absolute coordinates, merges page size information,

    divides coordinates by dimensions, and combines with already-relative rows.



    Args:

        review_file_df: Input DataFrame with potentially mixed coordinate systems.

        page_sizes_df: DataFrame with page dimensions ('page', 'image_width',

                       'image_height', 'mediabox_width', 'mediabox_height').

        xmin, xmax, ymin, ymax: Names of the coordinate columns.



    Returns:

        DataFrame with coordinates converted to relative system, sorted.

    """
    if review_file_df.empty or xmin not in review_file_df.columns:
        return review_file_df # Return early if empty or key column missing

    # --- Initial Type Conversion ---
    coord_cols = [xmin, xmax, ymin, ymax]
    cols_to_convert = coord_cols + ["page"]
    temp_df = review_file_df.copy() # Work on a copy initially

    for col in cols_to_convert:
        if col in temp_df.columns:
            temp_df[col] = pd.to_numeric(temp_df[col], errors="coerce")
        else:
            # If essential 'page' or coord column missing, cannot proceed meaningfully
            if col == 'page' or col in coord_cols:
                 print(f"Warning: Required column '{col}' not found in review_file_df. Returning original DataFrame.")
                 return review_file_df

    # --- Identify Absolute Coordinates ---
    # Create mask for rows where *all* coordinates are potentially absolute (> 1)
    # Handle potential NaNs introduced by to_numeric - treat NaN as not absolute.
    is_absolute_mask = (
        (temp_df[xmin] > 1) & (temp_df[xmin].notna()) &
        (temp_df[xmax] > 1) & (temp_df[xmax].notna()) &
        (temp_df[ymin] > 1) & (temp_df[ymin].notna()) &
        (temp_df[ymax] > 1) & (temp_df[ymax].notna())
    )

    # --- Separate DataFrames ---
    df_rel = temp_df[~is_absolute_mask] # Rows already relative or with NaN/mixed coords
    df_abs = temp_df[is_absolute_mask].copy() # Absolute rows - COPY here to allow modifications

    # --- Process Absolute Coordinates ---
    if not df_abs.empty:
        # Merge page sizes if necessary
        if "image_width" not in df_abs.columns and not page_sizes_df.empty:
            ps_df_copy = page_sizes_df.copy() # Work on a copy of page sizes

            # Ensure page is numeric for merge key matching
            ps_df_copy['page'] = pd.to_numeric(ps_df_copy['page'], errors='coerce')

            # Columns to merge from page_sizes
            merge_cols = ['page', 'image_width', 'image_height', 'mediabox_width', 'mediabox_height']
            available_merge_cols = [col for col in merge_cols if col in ps_df_copy.columns]

            # Prepare dimension columns in the copy
            for col in ['image_width', 'image_height', 'mediabox_width', 'mediabox_height']:
                 if col in ps_df_copy.columns:
                     # Replace "<NA>" string if present
                     if ps_df_copy[col].dtype == 'object':
                          ps_df_copy[col] = ps_df_copy[col].replace("<NA>", pd.NA)
                     # Convert to numeric
                     ps_df_copy[col] = pd.to_numeric(ps_df_copy[col], errors='coerce')

            # Perform the merge
            if 'page' in available_merge_cols: # Check if page exists for merging
                df_abs = df_abs.merge(
                    ps_df_copy[available_merge_cols],
                    on="page",
                    how="left"
                )
            else:
                 print("Warning: 'page' column not found in page_sizes_df. Cannot merge dimensions.")


        # Fallback to mediabox dimensions if image dimensions are missing
        if "image_width" in df_abs.columns and "mediabox_width" in df_abs.columns:
             # Check if image_width mostly missing - use .isna().all() or check percentage
             if df_abs["image_width"].isna().all():
                 print("Falling back to mediabox dimensions as image_width is entirely missing.")
                 df_abs["image_width"] = df_abs["image_width"].fillna(df_abs["mediabox_width"])
                 df_abs["image_height"] = df_abs["image_height"].fillna(df_abs["mediabox_height"])
             else:
                  # Optional: Fill only missing image dims if some exist?
                  # df_abs["image_width"].fillna(df_abs["mediabox_width"], inplace=True)
                  # df_abs["image_height"].fillna(df_abs["mediabox_height"], inplace=True)
                  pass # Current logic only falls back if ALL image_width are NaN

        # Ensure divisor columns are numeric before division
        divisors_numeric = True
        for col in ["image_width", "image_height"]:
            if col in df_abs.columns:
                 df_abs[col] = pd.to_numeric(df_abs[col], errors='coerce')
            else:
                 print(f"Warning: Dimension column '{col}' missing. Cannot perform division.")
                 divisors_numeric = False


        # Perform division if dimensions are available and numeric
        if divisors_numeric and "image_width" in df_abs.columns and "image_height" in df_abs.columns:
             # Use np.errstate to suppress warnings about division by zero or NaN if desired
             with np.errstate(divide='ignore', invalid='ignore'):
                df_abs[xmin] = df_abs[xmin] / df_abs["image_width"]
                df_abs[xmax] = df_abs[xmax] / df_abs["image_width"]
                df_abs[ymin] = df_abs[ymin] / df_abs["image_height"]
                df_abs[ymax] = df_abs[ymax] / df_abs["image_height"]
                # Replace potential infinities with NaN (optional, depending on desired outcome)
                df_abs.replace([np.inf, -np.inf], np.nan, inplace=True)
        else:
             print("Skipping coordinate division due to missing or non-numeric dimension columns.")


    # --- Combine Relative and Processed Absolute DataFrames ---
    dfs_to_concat = [df for df in [df_rel, df_abs] if not df.empty]

    if dfs_to_concat:
        final_df = pd.concat(dfs_to_concat, ignore_index=True)
    else:
        # If both splits were empty, return an empty DF with original columns
        print("Warning: Both relative and absolute splits resulted in empty DataFrames.")
        final_df = pd.DataFrame(columns=review_file_df.columns)


    # --- Final Sort ---
    required_sort_columns = {"page", xmin, ymin}
    if not final_df.empty and required_sort_columns.issubset(final_df.columns):
        # Ensure sort columns are numeric before sorting
        final_df['page'] = pd.to_numeric(final_df['page'], errors='coerce')
        final_df[ymin] = pd.to_numeric(final_df[ymin], errors='coerce')
        final_df[xmin] = pd.to_numeric(final_df[xmin], errors='coerce')
        # Sort by page, ymin, xmin (note order compared to multiply function)
        final_df.sort_values(["page", ymin, xmin], inplace=True, na_position='last')


    # --- Clean Up Columns ---
    # Correctly drop columns and reassign the result
    cols_to_drop = ["image_width", "image_height", "mediabox_width", "mediabox_height"]
    final_df = final_df.drop(columns=cols_to_drop, errors="ignore")

    return final_df

def multiply_coordinates_by_page_sizes(

    review_file_df: pd.DataFrame,

    page_sizes_df: pd.DataFrame,

    xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax"

):
    """

    Optimized function to convert relative coordinates to absolute based on page sizes.



    Separates relative (<=1) and absolute (>1) coordinates, merges page sizes

    for relative coordinates, calculates absolute pixel values, and recombines.

    """
    if review_file_df.empty or xmin not in review_file_df.columns:
        return review_file_df # Return early if empty or key column missing

    coord_cols = [xmin, xmax, ymin, ymax]
    # Initial type conversion for coordinates and page
    for col in coord_cols + ["page"]:
        if col in review_file_df.columns:
             # Use astype for potentially faster conversion if confident,
             # but to_numeric is safer for mixed types/errors
            review_file_df[col] = pd.to_numeric(review_file_df[col], errors="coerce")

    # --- Identify relative coordinates ---
    # Create mask for rows where *all* coordinates are potentially relative (<= 1)
    # Handle potential NaNs introduced by to_numeric - treat NaN as not relative here.
    is_relative_mask = (
        (review_file_df[xmin].le(1) & review_file_df[xmin].notna()) &
        (review_file_df[xmax].le(1) & review_file_df[xmax].notna()) &
        (review_file_df[ymin].le(1) & review_file_df[ymin].notna()) &
        (review_file_df[ymax].le(1) & review_file_df[ymax].notna())
    )

    # Separate DataFrames (minimal copies)
    df_abs = review_file_df[~is_relative_mask].copy() # Keep absolute rows separately
    df_rel = review_file_df[is_relative_mask].copy()  # Work only with relative rows

    if df_rel.empty:
        # If no relative coordinates, just sort and return absolute ones (if any)
        if not df_abs.empty and {"page", xmin, ymin}.issubset(df_abs.columns):
             df_abs.sort_values(["page", xmin, ymin], inplace=True, na_position='last')
        return df_abs

    # --- Process relative coordinates ---
    if "image_width" not in df_rel.columns and not page_sizes_df.empty:
        # Prepare page_sizes_df for merge
        page_sizes_df = page_sizes_df.copy() # Avoid modifying original page_sizes_df
        page_sizes_df['page'] = pd.to_numeric(page_sizes_df['page'], errors='coerce')
        # Ensure proper NA handling for image dimensions
        page_sizes_df[['image_width', 'image_height']] = page_sizes_df[['image_width','image_height']].replace("<NA>", pd.NA)
        page_sizes_df['image_width'] = pd.to_numeric(page_sizes_df['image_width'], errors='coerce')
        page_sizes_df['image_height'] = pd.to_numeric(page_sizes_df['image_height'], errors='coerce')

        # Merge page sizes
        df_rel = df_rel.merge(
            page_sizes_df[['page', 'image_width', 'image_height']],
            on="page",
            how="left"
        )

    # Multiply coordinates where image dimensions are available
    if "image_width" in df_rel.columns:
        # Create mask for rows in df_rel that have valid image dimensions
        has_size_mask = df_rel["image_width"].notna() & df_rel["image_height"].notna()

        # Apply multiplication using .loc and the mask (vectorized and efficient)
        # Ensure columns are numeric before multiplication (might be redundant if types are good)
        # df_rel.loc[has_size_mask, coord_cols + ['image_width', 'image_height']] = df_rel.loc[has_size_mask, coord_cols + ['image_width', 'image_height']].apply(pd.to_numeric, errors='coerce')

        df_rel.loc[has_size_mask, xmin] *= df_rel.loc[has_size_mask, "image_width"]
        df_rel.loc[has_size_mask, xmax] *= df_rel.loc[has_size_mask, "image_width"]
        df_rel.loc[has_size_mask, ymin] *= df_rel.loc[has_size_mask, "image_height"]
        df_rel.loc[has_size_mask, ymax] *= df_rel.loc[has_size_mask, "image_height"]


    # --- Combine absolute and processed relative DataFrames ---
    # Use list comprehension to handle potentially empty DataFrames
    dfs_to_concat = [df for df in [df_abs, df_rel] if not df.empty]

    if not dfs_to_concat:
        return pd.DataFrame() # Return empty if both are empty

    final_df = pd.concat(dfs_to_concat, ignore_index=True) # ignore_index is good practice after filtering/concat

    # --- Final Sort ---
    required_sort_columns = {"page", xmin, ymin}
    if not final_df.empty and required_sort_columns.issubset(final_df.columns):
        # Handle potential NaNs in sort columns gracefully
        final_df.sort_values(["page", xmin, ymin], inplace=True, na_position='last')

    return final_df

def do_proximity_match_by_page_for_text(df1:pd.DataFrame, df2:pd.DataFrame):
    '''

    Match text from one dataframe to another based on proximity matching of coordinates page by page.

    '''

    if not 'text' in df2.columns: df2['text'] = ''
    if not 'text' in df1.columns: df1['text'] = ''

    # Create a unique key based on coordinates and label for exact merge
    merge_keys = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page']
    df1['key'] = df1[merge_keys].astype(str).agg('_'.join, axis=1)
    df2['key'] = df2[merge_keys].astype(str).agg('_'.join, axis=1)

    # Attempt exact merge first
    merged_df = df1.merge(df2[['key', 'text']], on='key', how='left', suffixes=('', '_duplicate'))

    # If a match is found, keep that text; otherwise, keep the original df1 text
    merged_df['text'] = np.where(
        merged_df['text'].isna() | (merged_df['text'] == ''),
        merged_df.pop('text_duplicate'),
        merged_df['text']
    )

    # Define tolerance for proximity matching
    tolerance = 0.02

    # Precompute KDTree for each page in df2
    page_trees = {}
    for page in df2['page'].unique():
        df2_page = df2[df2['page'] == page]
        coords = df2_page[['xmin', 'ymin', 'xmax', 'ymax']].values
        if np.all(np.isfinite(coords)) and len(coords) > 0:
            page_trees[page] = (cKDTree(coords), df2_page)

    # Perform proximity matching
    for i, row in df1.iterrows():
        page_number = row['page']

        if page_number in page_trees:
            tree, df2_page = page_trees[page_number]

            # Query KDTree for nearest neighbor
            dist, idx = tree.query([row[['xmin', 'ymin', 'xmax', 'ymax']].values], distance_upper_bound=tolerance)

            if dist[0] < tolerance and idx[0] < len(df2_page):
                merged_df.at[i, 'text'] = df2_page.iloc[idx[0]]['text']

    # Drop the temporary key column
    merged_df.drop(columns=['key'], inplace=True)

    return merged_df

def do_proximity_match_all_pages_for_text(df1:pd.DataFrame, df2:pd.DataFrame, threshold:float=0.03):
    '''

    Match text from one dataframe to another based on proximity matching of coordinates across all pages.

    '''

    if not 'text' in df2.columns: df2['text'] = ''
    if not 'text' in df1.columns: df1['text'] = ''

    for col in ['xmin', 'ymin', 'xmax', 'ymax']:
        df1[col] = pd.to_numeric(df1[col], errors='coerce')

    for col in ['xmin', 'ymin', 'xmax', 'ymax']:
        df2[col] = pd.to_numeric(df2[col], errors='coerce')

    # Create a unique key based on coordinates and label for exact merge
    merge_keys = ['xmin', 'ymin', 'xmax', 'ymax', 'label', 'page']
    df1['key'] = df1[merge_keys].astype(str).agg('_'.join, axis=1)
    df2['key'] = df2[merge_keys].astype(str).agg('_'.join, axis=1)

    # Attempt exact merge first, renaming df2['text'] to avoid suffixes
    merged_df = df1.merge(df2[['key', 'text']], on='key', how='left', suffixes=('', '_duplicate'))

    # If a match is found, keep that text; otherwise, keep the original df1 text
    merged_df['text'] = np.where(
        merged_df['text'].isna() | (merged_df['text'] == ''),
        merged_df.pop('text_duplicate'),
        merged_df['text']
    )

    # Handle missing matches using a proximity-based approach
    # Convert coordinates to numpy arrays for KDTree lookup
    

    query_coords = np.array(df1[['xmin', 'ymin', 'xmax', 'ymax']].values, dtype=float)

    # Check for NaN or infinite values in query_coords and filter them out
    finite_mask = np.isfinite(query_coords).all(axis=1)
    if not finite_mask.all():
        #print("Warning: query_coords contains non-finite values. Filtering out non-finite entries.")
        query_coords = query_coords[finite_mask]  # Filter out rows with NaN or infinite values
    else:
        pass
    
    # Proceed only if query_coords is not empty
    if query_coords.size > 0:
        # Ensure df2 is filtered for finite values before creating the KDTree
        finite_mask_df2 = np.isfinite(df2[['xmin', 'ymin', 'xmax', 'ymax']].values).all(axis=1)
        df2_finite = df2[finite_mask_df2]

        # Create the KDTree with the filtered data
        tree = cKDTree(df2_finite[['xmin', 'ymin', 'xmax', 'ymax']].values)

        # Find nearest neighbors within a reasonable tolerance (e.g., 1% of page)
        tolerance = threshold
        distances, indices = tree.query(query_coords, distance_upper_bound=tolerance)

        # Assign text values where matches are found
        for i, (dist, idx) in enumerate(zip(distances, indices)):
            if dist < tolerance and idx < len(df2_finite):
                merged_df.at[i, 'text'] = df2_finite.iloc[idx]['text']

    # Drop the temporary key column
    merged_df.drop(columns=['key'], inplace=True)

    return merged_df

def _extract_page_number(image_path: Any) -> int:
    """Helper function to safely extract page number."""
    if not isinstance(image_path, str):
        return 1
    match = IMAGE_NUM_REGEX.search(image_path)
    if match:
        try:
            return int(match.group(1)) + 1
        except (ValueError, TypeError):
            return 1
    return 1

def convert_annotation_data_to_dataframe(all_annotations: List[Dict[str, Any]]):
    '''

    Convert annotation list to DataFrame using Pandas explode and json_normalize.

    '''
    if not all_annotations:
        # Return an empty DataFrame with the expected schema if input is empty
        return pd.DataFrame(columns=["image", "page", "xmin", "xmax", "ymin", "ymax", "text", "id"])

    # 1. Create initial DataFrame from the list of annotations
    # Use list comprehensions with .get() for robustness
    df = pd.DataFrame({
        "image": [anno.get("image") for anno in all_annotations],
        # Ensure 'boxes' defaults to an empty list if missing or None
        "boxes": [anno.get("boxes") if isinstance(anno.get("boxes"), list) else [] for anno in all_annotations]
    })

    # 2. Calculate the page number using the helper function
    df['page'] = df['image'].apply(_extract_page_number)

    # 3. Handle empty 'boxes' lists *before* exploding.
    # Explode removes rows where the list is empty. We want to keep them
    # as rows with NA values. Replace empty lists with a list containing
    # a single placeholder dictionary.
    placeholder_box = {"xmin": pd.NA, "xmax": pd.NA, "ymin": pd.NA, "ymax": pd.NA, "text": pd.NA, "id": pd.NA}
    df['boxes'] = df['boxes'].apply(lambda x: x if x else [placeholder_box])

    # 4. Explode the 'boxes' column. Each item in the list becomes a new row.
    df_exploded = df.explode('boxes', ignore_index=True)

    # 5. Normalize the 'boxes' column (which now contains dictionaries or the placeholder)
    # This turns the dictionaries into separate columns.
    # Check for NaNs or non-dict items just in case, though placeholder handles most cases.
    mask = df_exploded['boxes'].notna() & df_exploded['boxes'].apply(isinstance, args=(dict,))
    normalized_boxes = pd.json_normalize(df_exploded.loc[mask, 'boxes'])

    # 6. Combine the base data (image, page) with the normalized box data
    # Use the index of the exploded frame (where mask is True) to ensure correct alignment
    final_df = df_exploded.loc[mask, ['image', 'page']].reset_index(drop=True).join(normalized_boxes)

    # --- Optional: Handle rows that might have had non-dict items in 'boxes' ---
    # If there were rows filtered out by 'mask', you might want to add them back
    # with NA values for box columns. However, the placeholder strategy usually
    # prevents this from being necessary.

    # 7. Ensure essential columns exist and set column order
    essential_box_cols = ["xmin", "xmax", "ymin", "ymax", "text", "id", "label"]
    for col in essential_box_cols:
        if col not in final_df.columns:
            final_df[col] = pd.NA # Add column with NA if it wasn't present in any box
        final_df[col] = final_df[col].replace({None: pd.NA})

    base_cols = ["image"]
    extra_box_cols = [col for col in final_df.columns if col not in base_cols and col not in essential_box_cols]
    final_col_order = base_cols + essential_box_cols + sorted(extra_box_cols)

    # Reindex to ensure consistent column order and presence of essential columns
    # Using fill_value=pd.NA isn't strictly needed here as we added missing columns above,
    # but it's good practice if columns could be missing for other reasons.
    final_df = final_df.reindex(columns=final_col_order, fill_value=pd.NA)
    final_df = final_df.dropna(subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"], how="all")
    final_df.replace({None: pd.NA})

    return final_df

def create_annotation_dicts_from_annotation_df(

    all_image_annotations_df: pd.DataFrame,

    page_sizes: List[Dict[str, Any]]

) -> List[Dict[str, Any]]:
    '''

    Convert annotation DataFrame back to list of dicts using dictionary lookup.

    Ensures all images from page_sizes are present without duplicates.

    '''
    # 1. Create a dictionary keyed by image path for efficient lookup & update
    # Initialize with all images from page_sizes. Use .get for safety.
    image_dict: Dict[str, Dict[str, Any]] = {}
    for item in page_sizes:
        image_path = item.get("image_path")
        if image_path:  # Only process if image_path exists and is not None/empty
            image_dict[image_path] = {"image": image_path, "boxes": []}

    # Check if the DataFrame is empty or lacks necessary columns
    if all_image_annotations_df.empty or 'image' not in all_image_annotations_df.columns:
        #print("Warning: Annotation DataFrame is empty or missing 'image' column.")
        return list(image_dict.values()) # Return based on page_sizes only

    # 2. Define columns to extract for boxes and check availability
    # Make sure these columns actually exist in the DataFrame
    box_cols = ['xmin', 'ymin', 'xmax', 'ymax', 'color', 'label', 'text', 'id']
    available_cols = [col for col in box_cols if col in all_image_annotations_df.columns]

    if 'text' in all_image_annotations_df.columns:
        all_image_annotations_df['text'] = all_image_annotations_df['text'].fillna('')
        #all_image_annotations_df.loc[all_image_annotations_df['text'].isnull(), 'text'] = ''

    if not available_cols:
        print(f"Warning: None of the expected box columns ({box_cols}) found in DataFrame.")
        return list(image_dict.values()) # Return based on page_sizes only

    # 3. Group the DataFrame by image and update the dictionary
    # Drop rows where essential coordinates might be NA (adjust if NA is meaningful)
    coord_cols = ['xmin', 'ymin', 'xmax', 'ymax']
    valid_box_df = all_image_annotations_df.dropna(
        subset=[col for col in coord_cols if col in available_cols]
    ).copy() # Use .copy() to avoid SettingWithCopyWarning if modifying later


    # Check if any valid boxes remain after dropping NAs
    if valid_box_df.empty:
         print("Warning: No valid annotation rows found in DataFrame after dropping NA coordinates.")
         return list(image_dict.values())

    # Process groups
    try:
        for image_path, group in valid_box_df.groupby('image', observed=True, sort=False):
            # Check if this image path exists in our target dictionary (from page_sizes)
            if image_path in image_dict:
                # Convert the relevant columns of the group to a list of dicts
                # Using only columns that are actually available
                boxes = group[available_cols].to_dict(orient='records')
                # Update the 'boxes' list in the dictionary
                image_dict[image_path]['boxes'] = boxes
            # Else: Image found in DataFrame but not required by page_sizes; ignore it.
    except KeyError:
        # This shouldn't happen due to the 'image' column check above, but handle defensively
        print("Error: Issue grouping DataFrame by 'image'.")
        return list(image_dict.values())


    # 4. Convert the dictionary values back into the final list format
    result = list(image_dict.values())

    return result

def convert_annotation_json_to_review_df(

    all_annotations: List[dict],

    redaction_decision_output: pd.DataFrame = pd.DataFrame(),

    page_sizes: List[dict] = [],

    do_proximity_match: bool = True

) -> pd.DataFrame:
    '''

    Convert the annotation json data to a dataframe format.

    Add on any text from the initial review_file dataframe by joining based on 'id' if available

    in both sources, otherwise falling back to joining on pages/co-ordinates (if option selected).



    Refactored for improved efficiency, prioritizing ID-based join and conditionally applying

    coordinate division and proximity matching.

    '''

    # 1. Convert annotations to DataFrame
    review_file_df = convert_annotation_data_to_dataframe(all_annotations)

    # Only keep rows in review_df where there are coordinates (assuming xmin is representative)
    # Use .notna() for robustness with potential None or NaN values
    review_file_df.dropna(subset=['xmin', 'ymin', 'xmax', 'ymax'], how='any', inplace=True)

    # Exit early if the initial conversion results in an empty DataFrame
    if review_file_df.empty:
        # Define standard columns for an empty return DataFrame
        # Ensure 'id' is included if it was potentially expected based on input structure
        # We don't know the columns from convert_annotation_data_to_dataframe without seeing it,
        # but let's assume a standard set and add 'id' if it appeared.
        standard_cols = ["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax", "text"]
        if 'id' in review_file_df.columns:
             standard_cols.append('id')
        return pd.DataFrame(columns=standard_cols)

    # Ensure 'id' column exists for logic flow, even if empty
    if 'id' not in review_file_df.columns:
        review_file_df['id'] = ''
    # Do the same for redaction_decision_output if it's not empty
    if not redaction_decision_output.empty and 'id' not in redaction_decision_output.columns:
         redaction_decision_output['id'] = ''


    # 2. Process page sizes if provided - needed potentially for coordinate division later
    # Process this once upfront if the data is available
    page_sizes_df = pd.DataFrame() # Initialize as empty
    if page_sizes:
        page_sizes_df = pd.DataFrame(page_sizes)
        if not page_sizes_df.empty:
            # Safely convert page column to numeric and then int
            page_sizes_df["page"] = pd.to_numeric(page_sizes_df["page"], errors="coerce")
            page_sizes_df.dropna(subset=["page"], inplace=True)
            if not page_sizes_df.empty: # Check again after dropping NaNs
                page_sizes_df["page"] = page_sizes_df["page"].astype(int)
            else:
                 print("Warning: Page sizes DataFrame became empty after processing, coordinate division will be skipped.")


    # 3. Join additional data from redaction_decision_output if provided
    text_added_successfully = False # Flag to track if text was added by any method

    if not redaction_decision_output.empty:
        # --- Attempt to join data based on 'id' column first ---

        # Check if 'id' columns are present and have non-null values in *both* dataframes
        id_col_exists_in_review = 'id' in review_file_df.columns and not review_file_df['id'].isnull().all() and not (review_file_df['id'] == '').all()
        id_col_exists_in_redaction = 'id' in redaction_decision_output.columns and not redaction_decision_output['id'].isnull().all() and not (redaction_decision_output['id'] == '').all()


        if id_col_exists_in_review and id_col_exists_in_redaction:
            #print("Attempting to join data based on 'id' column.")
            try:
                # Ensure 'id' columns are of string type for robust merging
                review_file_df['id'] = review_file_df['id'].astype(str)
                # Make a copy if needed, but try to avoid if redaction_decision_output isn't modified later
                # Let's use a copy for safety as in the original code
                redaction_copy = redaction_decision_output.copy()
                redaction_copy['id'] = redaction_copy['id'].astype(str)

                # Select columns to merge from redaction output. Prioritize 'text'.
                cols_to_merge = ['id']
                if 'text' in redaction_copy.columns:
                    cols_to_merge.append('text')
                else:
                    print("Warning: 'text' column not found in redaction_decision_output. Cannot merge text using 'id'.")

                # Perform a left merge to keep all annotations and add matching text
                # Use a suffix for the text column from the right DataFrame
                original_text_col_exists = 'text' in review_file_df.columns
                merge_suffix = '_redaction' if original_text_col_exists else ''

                merged_df = pd.merge(
                    review_file_df,
                    redaction_copy[cols_to_merge],
                    on='id',
                    how='left',
                    suffixes=('', merge_suffix)
                )

                # Update the 'text' column if a new one was brought in
                if 'text' + merge_suffix in merged_df.columns:
                    redaction_text_col = 'text' + merge_suffix
                    if original_text_col_exists:
                         # Combine: Use text from redaction where available, otherwise keep original
                         merged_df['text'] = merged_df[redaction_text_col].combine_first(merged_df['text'])
                         # Drop the temporary column
                         merged_df = merged_df.drop(columns=[redaction_text_col])
                    else:
                         # Redaction output had text, but review_file_df didn't. Rename the new column.
                         merged_df = merged_df.rename(columns={redaction_text_col: 'text'})

                    text_added_successfully = True # Indicate text was potentially added

                review_file_df = merged_df # Update the main DataFrame

                #print("Successfully attempted to join data using 'id'.") # Note: Text might not have been in redaction data

            except Exception as e:
                print(f"Error during 'id'-based merge: {e}. Checking for proximity match fallback.")
                # Fall through to proximity match logic below

        # --- Fallback to proximity match if ID join wasn't possible/successful and enabled ---
        # Note: If id_col_exists_in_review or id_col_exists_in_redaction was False,
        # the block above was skipped, and we naturally fall here.
        # If an error occurred in the try block, joined_by_id would implicitly be False
        # because text_added_successfully wasn't set to True.

        # Only attempt proximity match if text wasn't added by ID join and proximity is requested
        if not text_added_successfully and do_proximity_match:
             print("Attempting proximity match to add text data.")

             # Ensure 'page' columns are numeric before coordinate division and proximity match
             # (Assuming divide_coordinates_by_page_sizes and do_proximity_match_all_pages_for_text need this)
             if 'page' in review_file_df.columns:
                 review_file_df['page'] = pd.to_numeric(review_file_df['page'], errors='coerce').fillna(-1).astype(int) # Use -1 for NaN pages
                 review_file_df = review_file_df[review_file_df['page'] != -1] # Drop rows where page conversion failed
             if not redaction_decision_output.empty and 'page' in redaction_decision_output.columns:
                  redaction_decision_output['page'] = pd.to_numeric(redaction_decision_output['page'], errors='coerce').fillna(-1).astype(int)
                  redaction_decision_output = redaction_decision_output[redaction_decision_output['page'] != -1]

             # Perform coordinate division IF page_sizes were processed and DataFrame is not empty
             if not page_sizes_df.empty:
                  # Apply coordinate division *before* proximity match
                  review_file_df = divide_coordinates_by_page_sizes(review_file_df, page_sizes_df)
                  if not redaction_decision_output.empty:
                       redaction_decision_output = divide_coordinates_by_page_sizes(redaction_decision_output, page_sizes_df)

             # Now perform the proximity match
             # Note: Potential DataFrame copies happen inside do_proximity_match based on its implementation
             if not redaction_decision_output.empty:
                try:
                    review_file_df = do_proximity_match_all_pages_for_text(
                        df1=review_file_df, # Pass directly, avoid caller copy if possible by modifying function signature
                        df2=redaction_decision_output # Pass directly
                    )
                    # Assuming do_proximity_match_all_pages_for_text adds/updates the 'text' column
                    if 'text' in review_file_df.columns:
                         text_added_successfully = True
                    print("Proximity match completed.")
                except Exception as e:
                    print(f"Error during proximity match: {e}. Text data may not be added.")

        elif not text_added_successfully and not do_proximity_match:
             print("Skipping joining text data (ID join not possible/failed, proximity match disabled).")

    # 4. Ensure required columns exist and are ordered
    # Define base required columns. 'id' and 'text' are conditionally added.
    required_columns_base = ["image", "page", "label", "color", "xmin", "ymin", "xmax", "ymax"]
    final_columns = required_columns_base[:] # Start with base columns

    # Add 'id' and 'text' if they exist in the DataFrame at this point
    if 'id' in review_file_df.columns:
        final_columns.append('id')
    if 'text' in review_file_df.columns:
        final_columns.append('text') # Add text column if it was created/merged

    # Add any missing required columns with a default value (e.g., blank string)
    for col in final_columns:
        if col not in review_file_df.columns:
            # Use appropriate default based on expected type, '' for text/id, np.nan for coords?
            # Sticking to '' as in original for simplicity, but consider data types.
            review_file_df[col] = '' # Or np.nan for numerical, but coords already checked by dropna

    # Select and order the final set of columns
    # Ensure all selected columns actually exist after adding defaults
    review_file_df = review_file_df[[col for col in final_columns if col in review_file_df.columns]]


    # 5. Final processing and sorting
    # Convert colours from list to tuple if necessary - apply is okay here unless lists are vast
    if 'color' in review_file_df.columns:
         # Check if the column actually contains lists before applying lambda
         if review_file_df['color'].apply(lambda x: isinstance(x, list)).any():
            review_file_df["color"] = review_file_df["color"].apply(lambda x: tuple(x) if isinstance(x, list) else x)

    # Sort the results
    # Ensure sort columns exist before sorting
    sort_columns = ['page', 'ymin', 'xmin', 'label']
    valid_sort_columns = [col for col in sort_columns if col in review_file_df.columns]
    if valid_sort_columns and not review_file_df.empty: # Only sort non-empty df
         # Convert potential numeric sort columns to appropriate types if necessary
         # (e.g., 'page', 'ymin', 'xmin') to ensure correct sorting.
         # dropna(subset=[...], inplace=True) earlier should handle NaNs in coords.
         # page conversion already done before proximity match.
         try:
             review_file_df = review_file_df.sort_values(valid_sort_columns)
         except TypeError as e:
              print(f"Warning: Could not sort DataFrame due to type error in sort columns: {e}")
              # Proceed without sorting

    review_file_df = review_file_df.dropna(subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"])

    return review_file_df

def fill_missing_box_ids(data_input: dict) -> dict:
    """

    Generates unique alphanumeric IDs for bounding boxes in an input dictionary

    where the 'id' is missing, blank, or not a 12-character string.



    Args:

        data_input (dict): The input dictionary containing 'image' and 'boxes' keys.

                           'boxes' should be a list of dictionaries, each potentially

                           with an 'id' key.



    Returns:

        dict: The input dictionary with missing/invalid box IDs filled.

              Note: The function modifies the input dictionary in place.

    """

    # --- Input Validation ---
    if not isinstance(data_input, dict):
        raise TypeError("Input 'data_input' must be a dictionary.")
    #if 'boxes' not in data_input or not isinstance(data_input.get('boxes'), list):
    #    raise ValueError("Input dictionary must contain a 'boxes' key with a list value.")

    boxes = data_input#['boxes']
    id_length = 12
    character_set = string.ascii_letters + string.digits # a-z, A-Z, 0-9

    # --- Get Existing IDs to Ensure Uniqueness ---
    # Collect all valid existing IDs first
    existing_ids = set()
    #for box in boxes:
    # Check if 'id' exists, is a string, and is the correct length
    box_id = boxes.get('id')
    if isinstance(box_id, str) and len(box_id) == id_length:
        existing_ids.add(box_id)

    # --- Identify and Fill Rows Needing IDs ---
    generated_ids_set = set() # Keep track of IDs generated *in this run*
    num_filled = 0

    #for box in boxes:
    box_id = boxes.get('id')

    # Check if ID needs to be generated
    # Needs ID if: key is missing, value is None, value is not a string,
    # value is an empty string after stripping whitespace, or value is a string
    # but not of the correct length.
    needs_new_id = (
        box_id is None or
        not isinstance(box_id, str) or
        box_id.strip() == "" or
        len(box_id) != id_length
    )

    if needs_new_id:
        # Generate a unique ID
        attempts = 0
        while True:
            candidate_id = ''.join(random.choices(character_set, k=id_length))
            # Check against *all* existing valid IDs and *newly* generated ones in this run
            if candidate_id not in existing_ids and candidate_id not in generated_ids_set:
                generated_ids_set.add(candidate_id)
                boxes['id'] = candidate_id # Assign the new ID directly to the box dict
                num_filled += 1
                break # Found a unique ID
            attempts += 1
            # Safety break for unlikely infinite loop (though highly improbable with 12 chars)
            if attempts > len(boxes) * 100 + 1000:
                    raise RuntimeError(f"Failed to generate a unique ID after {attempts} attempts. Check ID length or existing IDs.")

    if num_filled > 0:
        pass
        #print(f"Successfully filled {num_filled} missing or invalid box IDs.")
    else:
        pass
        #print("No missing or invalid box IDs found.")


    # The input dictionary 'data_input' has been modified in place
    return data_input

def fill_missing_ids(df: pd.DataFrame, column_name: str = 'id', length: int = 12) -> pd.DataFrame:
    """

    Optimized: Generates unique alphanumeric IDs for rows in a DataFrame column

    where the value is missing (NaN, None) or an empty/whitespace string.



    Args:

        df (pd.DataFrame): The input Pandas DataFrame.

        column_name (str): The name of the column to check and fill (defaults to 'id').

                           This column will be added if it doesn't exist.

        length (int): The desired length of the generated IDs (defaults to 12).



    Returns:

        pd.DataFrame: The DataFrame with missing/empty IDs filled in the specified column.

                      Note: The function modifies the DataFrame directly (in-place).

    """

    # --- Input Validation ---
    if not isinstance(df, pd.DataFrame):
        raise TypeError("Input 'df' must be a Pandas DataFrame.")
    if not isinstance(column_name, str) or not column_name:
        raise ValueError("'column_name' must be a non-empty string.")
    if not isinstance(length, int) or length <= 0:
        raise ValueError("'length' must be a positive integer.")

    # --- Ensure Column Exists ---
    original_dtype = None
    if column_name not in df.columns:
        print(f"Column '{column_name}' not found. Adding it to the DataFrame.")
        # Initialize with None (which Pandas often treats as NaN but allows object dtype)
        df[column_name] = None
        # Set original_dtype to object so it likely becomes string later
        original_dtype = object
    else:
        original_dtype = df[column_name].dtype

    # --- Identify Rows Needing IDs ---
    # 1. Check for actual null values (NaN, None, NaT)
    is_null = df[column_name].isna()

    # 2. Check for empty or whitespace-only strings AFTER converting potential values to string
    #    Only apply string checks on rows that are *not* null to avoid errors/warnings
    #    Fill NaN temporarily for string operations, then check length or equality
    is_empty_str = pd.Series(False, index=df.index) # Default to False
    if not is_null.all(): # Only check strings if there are non-null values
         temp_str_col = df.loc[~is_null, column_name].astype(str).str.strip()
         is_empty_str.loc[~is_null] = (temp_str_col == '')

    # Combine the conditions
    is_missing_or_empty = is_null | is_empty_str

    rows_to_fill_index = df.index[is_missing_or_empty]
    num_needed = len(rows_to_fill_index)

    if num_needed == 0:
        # Ensure final column type is consistent if nothing was done
        if pd.api.types.is_object_dtype(original_dtype) or pd.api.types.is_string_dtype(original_dtype):
             pass # Likely already object or string
        else:
             # If original was numeric/etc., but might contain strings now? Unlikely here.
             pass # Or convert to object: df[column_name] = df[column_name].astype(object)
        # print(f"No missing or empty values found requiring IDs in column '{column_name}'.")
        return df

    print(f"Found {num_needed} rows requiring a unique ID in column '{column_name}'.")

    # --- Get Existing IDs to Ensure Uniqueness ---
    # Consider only rows that are *not* missing/empty
    valid_rows = df.loc[~is_missing_or_empty, column_name]
    # Drop any remaining nulls (shouldn't be any based on mask, but belts and braces)
    valid_rows = valid_rows.dropna()
    # Convert to string *only* if not already string/object, then filter out empty strings again
    if not pd.api.types.is_object_dtype(valid_rows.dtype) and not pd.api.types.is_string_dtype(valid_rows.dtype):
         existing_ids = set(valid_rows.astype(str).str.strip())
    else: # Already string or object, just strip and convert to set
         existing_ids = set(valid_rows.astype(str).str.strip()) # astype(str) handles mixed types in object column

    # Remove empty string from existing IDs if it's there after stripping
    existing_ids.discard('')


    # --- Generate Unique IDs ---
    character_set = string.ascii_letters + string.digits # a-z, A-Z, 0-9
    generated_ids_set = set() # Keep track of IDs generated *in this run*
    new_ids_list = []      # Store the generated IDs in order

    max_possible_ids = len(character_set) ** length
    if num_needed > max_possible_ids:
        raise ValueError(f"Cannot generate {num_needed} unique IDs with length {length}. Maximum possible is {max_possible_ids}.")

    # Pre-calculate safety break limit
    max_attempts_per_id = max(1000, num_needed * 10) # Adjust multiplier as needed

    #print(f"Generating {num_needed} unique IDs of length {length}...")
    for i in range(num_needed):
        attempts = 0
        while True:
            candidate_id = ''.join(random.choices(character_set, k=length))
            # Check against *all* known existing IDs and *newly* generated ones
            if candidate_id not in existing_ids and candidate_id not in generated_ids_set:
                generated_ids_set.add(candidate_id)
                new_ids_list.append(candidate_id)
                break # Found a unique ID
            attempts += 1
            if attempts > max_attempts_per_id : # Safety break
                raise RuntimeError(f"Failed to generate a unique ID after {attempts} attempts. Check length, character set, or density of existing IDs.")

        # Optional progress update
        # if (i + 1) % 1000 == 0:
        #    print(f"Generated {i+1}/{num_needed} IDs...")


    # --- Assign New IDs ---
    # Use the previously identified index to assign the new IDs correctly
    # Assigning string IDs might change the column's dtype to 'object'
    if not pd.api.types.is_object_dtype(original_dtype) and not pd.api.types.is_string_dtype(original_dtype):
         warnings.warn(f"Column '{column_name}' dtype might change from '{original_dtype}' to 'object' due to string ID assignment.", UserWarning)

    df.loc[rows_to_fill_index, column_name] = new_ids_list
    print(f"Successfully assigned {len(new_ids_list)} new unique IDs to column '{column_name}'.")

    # Optional: Convert the entire column to string type at the end for consistency
    # df[column_name] = df[column_name].astype(str)

    return df

def convert_review_df_to_annotation_json(

    review_file_df: pd.DataFrame,

    image_paths: List[str], # List of image file paths

    page_sizes: List[Dict], # List of dicts like [{'page': 1, 'image_path': '...', 'image_width': W, 'image_height': H}, ...]

    xmin="xmin", xmax="xmax", ymin="ymin", ymax="ymax" # Coordinate column names

) -> List[Dict]:
    """

    Optimized function to convert review DataFrame to Gradio Annotation JSON format.



    Ensures absolute coordinates, handles missing IDs, deduplicates based on key fields,

    selects final columns, and structures data per image/page based on page_sizes.



    Args:

        review_file_df: Input DataFrame with annotation data.

        image_paths: List of image file paths (Note: currently unused if page_sizes provides paths).

        page_sizes: REQUIRED list of dictionaries, each containing 'page',

                    'image_path', 'image_width', and 'image_height'. Defines

                    output structure and dimensions for coordinate conversion.

        xmin, xmax, ymin, ymax: Names of the coordinate columns.



    Returns:

        List of dictionaries suitable for Gradio Annotation output, one dict per image/page.

    """
    review_file_df = review_file_df.dropna(subset=["xmin", "xmax", "ymin", "ymax", "text", "id", "label"])

    if not page_sizes:
        raise ValueError("page_sizes argument is required and cannot be empty.")

    # --- Prepare Page Sizes DataFrame ---
    try:
        page_sizes_df = pd.DataFrame(page_sizes)
        required_ps_cols = {'page', 'image_path', 'image_width', 'image_height'}
        if not required_ps_cols.issubset(page_sizes_df.columns):
            missing = required_ps_cols - set(page_sizes_df.columns)
            raise ValueError(f"page_sizes is missing required keys: {missing}")
        # Convert page sizes columns to appropriate numeric types early
        page_sizes_df['page'] = pd.to_numeric(page_sizes_df['page'], errors='coerce')
        page_sizes_df['image_width'] = pd.to_numeric(page_sizes_df['image_width'], errors='coerce')
        page_sizes_df['image_height'] = pd.to_numeric(page_sizes_df['image_height'], errors='coerce')
        # Use nullable Int64 for page number consistency
        page_sizes_df['page'] = page_sizes_df['page'].astype('Int64')

    except Exception as e:
        raise ValueError(f"Error processing page_sizes: {e}") from e


    # Handle empty input DataFrame gracefully
    if review_file_df.empty:
        print("Input review_file_df is empty. Proceeding to generate JSON structure with empty boxes.")
        # Ensure essential columns exist even if empty for later steps
        for col in [xmin, xmax, ymin, ymax, "page", "label", "color", "id", "text"]:
             if col not in review_file_df.columns:
                 review_file_df[col] = pd.NA
    else:
        # --- Coordinate Conversion (if needed) ---
        coord_cols_to_check = [c for c in [xmin, xmax, ymin, ymax] if c in review_file_df.columns]
        needs_multiplication = False
        if coord_cols_to_check:
            temp_df_numeric = review_file_df[coord_cols_to_check].apply(pd.to_numeric, errors='coerce')
            if temp_df_numeric.le(1).any().any(): # Check if any numeric coord <= 1 exists
                 needs_multiplication = True

        if needs_multiplication:
            #print("Relative coordinates detected or suspected, running multiplication...")
            review_file_df = multiply_coordinates_by_page_sizes(
                review_file_df.copy(), # Pass a copy to avoid modifying original outside function
                page_sizes_df,
                xmin, xmax, ymin, ymax
            )
        else:
            #print("No relative coordinates detected or required columns missing, skipping multiplication.")
            # Still ensure essential coordinate/page columns are numeric if they exist
            cols_to_convert = [c for c in [xmin, xmax, ymin, ymax, "page"] if c in review_file_df.columns]
            for col in cols_to_convert:
                review_file_df[col] = pd.to_numeric(review_file_df[col], errors='coerce')

        # Handle potential case where multiplication returns an empty DF
        if review_file_df.empty:
            print("DataFrame became empty after coordinate processing.")
            # Re-add essential columns if they were lost
            for col in [xmin, xmax, ymin, ymax, "page", "label", "color", "id", "text"]:
                if col not in review_file_df.columns:
                    review_file_df[col] = pd.NA

        # --- Fill Missing IDs ---
        review_file_df = fill_missing_ids(review_file_df.copy()) # Pass a copy

        # --- Deduplicate Based on Key Fields ---
        base_dedupe_cols = ["page", xmin, ymin, xmax, ymax, "label", "id"]
        # Identify which deduplication columns actually exist in the DataFrame
        cols_for_dedupe = [col for col in base_dedupe_cols if col in review_file_df.columns]
        # Add 'image' column for deduplication IF it exists (matches original logic intent)
        if "image" in review_file_df.columns:
            cols_for_dedupe.append("image")

        # Ensure placeholder columns exist if they are needed for deduplication
        # (e.g., 'label', 'id' should be present after fill_missing_ids)
        for col in ['label', 'id']:
            if col in cols_for_dedupe and col not in review_file_df.columns:
                 # This might indicate an issue in fill_missing_ids or prior steps
                 print(f"Warning: Column '{col}' needed for dedupe but not found. Adding NA.")
                 review_file_df[col] = "" # Add default empty string

        if cols_for_dedupe: # Only attempt dedupe if we have columns to check
            #print(f"Deduplicating based on columns: {cols_for_dedupe}")
            # Convert relevant columns to string before dedupe to avoid type issues with mixed data (optional, depends on data)
            # for col in cols_for_dedupe:
            #    review_file_df[col] = review_file_df[col].astype(str)
            review_file_df = review_file_df.drop_duplicates(subset=cols_for_dedupe)
        else:
            print("Skipping deduplication: No valid columns found to deduplicate by.")


    # --- Select and Prepare Final Output Columns ---
    required_final_cols = ["page", "label", "color", xmin, ymin, xmax, ymax, "id", "text"]
    # Identify which of the desired final columns exist in the (now potentially deduplicated) DataFrame
    available_final_cols = [col for col in required_final_cols if col in review_file_df.columns]

    # Ensure essential output columns exist, adding defaults if missing AFTER deduplication
    for col in required_final_cols:
         if col not in review_file_df.columns:
             print(f"Adding missing final column '{col}' with default value.")
             if col in ['label', 'id', 'text']:
                 review_file_df[col] = "" # Default empty string
             elif col == 'color':
                 review_file_df[col] = None # Default None or a default color tuple
             else: # page, coordinates
                 review_file_df[col] = pd.NA # Default NA for numeric/page
             available_final_cols.append(col) # Add to list of available columns

    # Select only the final desired columns in the correct order
    review_file_df = review_file_df[available_final_cols]

    # --- Final Formatting ---
    if not review_file_df.empty:
        # Convert list colors to tuples (important for some downstream uses)
        if 'color' in review_file_df.columns:
            review_file_df['color'] = review_file_df['color'].apply(
                lambda x: tuple(x) if isinstance(x, list) else x
            )
        # Ensure page column is nullable integer type for reliable grouping
        if 'page' in review_file_df.columns:
             review_file_df['page'] = review_file_df['page'].astype('Int64')

    # --- Group Annotations by Page ---
    if 'page' in review_file_df.columns:
        grouped_annotations = review_file_df.groupby('page')
        group_keys = set(grouped_annotations.groups.keys()) # Use set for faster lookups
    else:
        # Cannot group if page column is missing
        print("Error: 'page' column missing, cannot group annotations.")
        grouped_annotations = None
        group_keys = set()


    # --- Build JSON Structure ---
    json_data = []
    output_cols_for_boxes = [col for col in ["label", "color", xmin, ymin, xmax, ymax, "id", "text"] if col in review_file_df.columns]

    # Iterate through page_sizes_df to define the structure (one entry per image path)
    for _, row in page_sizes_df.iterrows():
        page_num = row['page'] # Already Int64
        pdf_image_path = row['image_path']
        annotation_boxes = [] # Default to empty list

        # Check if the page exists in the grouped annotations (using the faster set lookup)
        # Check pd.notna because page_num could be <NA> if conversion failed
        if pd.notna(page_num) and page_num in group_keys and grouped_annotations:
            try:
                page_group_df = grouped_annotations.get_group(page_num)
                # Convert the group to list of dicts, selecting only needed box properties
                # Handle potential NaN coordinates before conversion to JSON
                annotation_boxes = page_group_df[output_cols_for_boxes].replace({np.nan: None}).to_dict(orient='records')

                # Optional: Round coordinates here if needed AFTER potential multiplication
                # for box in annotation_boxes:
                #     for coord in [xmin, ymin, xmax, ymax]:
                #         if coord in box and box[coord] is not None:
                #             box[coord] = round(float(box[coord]), 2) # Example: round to 2 decimals

            except KeyError:
                 print(f"Warning: Group key {page_num} not found despite being in group_keys (should not happen).")
                 annotation_boxes = [] # Keep empty

        # Append the structured data for this image/page
        json_data.append({
            "image": pdf_image_path,
            "boxes": annotation_boxes
        })

    return json_data