Spaces:
Running
Running
File size: 16,400 Bytes
c345460 db62cdf c345460 db62cdf c345460 057450b c345460 5f66cd6 c345460 057450b c345460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline, StableDiffusionXLImg2ImgPipeline, AutoPipelineForText2Image
from diffusers.utils import load_image
from PIL import Image
import time
import random
import os
import gc # Garbage collector
import logging
# --- Configuration ---
# Setup basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Ensure CPU is used
DEVICE = "cpu"
TORCH_DTYPE = torch.float32 # float16/bfloat16 not practical on CPU
# Model definitions
# We need to know the base model for LoRAs and compatible IP-Adapters
MODEL_CONFIG = {
"BlaireSilver13/youtube-thumbnail": {
"repo_id": "BlaireSilver13/youtube-thumbnail",
"is_lora": True,
"lora_filename": "FLUX-youtube-thumbnails.safetensors",
"base_model": "black-forest-labs/FLUX.1-dev",
"pipeline_class": AutoPipelineForText2Image,
"ip_adapter_repo": "h94/IP-Adapter",
"ip_adapter_weights": "ip-adapter_sd15.bin",
"ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
},
"itzzdeep/youtube-thumbnails-sdxl-lora": {
"repo_id": "itzzdeep/youtube-thumbnails-sdxl-lora",
"is_lora": True,
"lora_filename": "youtube-thumbnails-sdxl-lora.safetensors",
"base_model": "stabilityai/stable-diffusion-xl-base-1.0",
"pipeline_class": AutoPipelineForText2Image, # Handles SDXL loading better
"ip_adapter_repo": "h94/IP-Adapter", # SDXL IP-Adapter repo
"ip_adapter_weights": "ip-adapter-plus_sdxl_vit-h.bin", # SDXL weights
"ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" # Usually the same encoder repo
},
"justmalhar/flux-thumbnails-v3": {
"repo_id": "justmalhar/flux-thumbnails-v3",
"is_lora": False, # Assuming this is a full SD 1.5 fine-tune based on common practice
"base_model": None,
"pipeline_class": StableDiffusionPipeline,
"ip_adapter_repo": "h94/IP-Adapter",
"ip_adapter_weights": "ip-adapter_sd15.bin",
"ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
},
"saq1b/mrbeast-thumbnail-style": {
"repo_id": "saq1b/mrbeast-thumbnail-style",
"is_lora": True, # This is typically a LoRA
"lora_filename": None, # Auto-detect or specify e.g., "pytorch_lora_weights.safetensors"
"base_model": "runwayml/stable-diffusion-v1-5", # Common base for SD 1.5 LoRAs
"pipeline_class": StableDiffusionPipeline,
"ip_adapter_repo": "h94/IP-Adapter",
"ip_adapter_weights": "ip-adapter_sd15.bin",
"ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
}
}
AVAILABLE_MODELS = list(MODEL_CONFIG.keys())
# Global variable to potentially hold the pipeline to avoid reloading *if memory allows*
# NOTE: On restricted CPU environments, it's SAFER to load inside the function.
# Set to None initially. Let's load dynamically inside the function for safety.
# current_pipeline = None
# current_model_key = None
# --- Helper Functions ---
def cleanup_memory():
"""Attempts to free GPU memory (less relevant for CPU but good practice)."""
logger.info("Attempting to clean up memory...")
try:
# If a pipeline exists globally (if we change strategy), unload it
# global current_pipeline, current_model_key
# if current_pipeline is not None:
# logger.info(f"Unloading model {current_model_key} from memory.")
# del current_pipeline
# current_pipeline = None
# current_model_key = None
gc.collect()
if torch.cuda.is_available(): # Only run cuda cache empty if cuda is present
torch.cuda.empty_cache()
logger.info("Memory cleanup potentially done.")
except Exception as e:
logger.error(f"Error during memory cleanup: {e}")
# --- Main Generation Function ---
def generate_thumbnail(
model_key: str,
prompt: str,
negative_prompt: str,
reference_image_pil: Image.Image | None, # Gradio provides PIL image
num_inference_steps: int,
guidance_scale: float,
seed: int,
ip_adapter_scale: float,
progress=gr.Progress()
):
"""Generates an image using the selected model, IP-Adapter, and settings."""
start_time = time.time()
debug_log = f"--- Generation Log ({time.strftime('%Y-%m-%d %H:%M:%S')}) ---\n"
debug_log += f"Selected Model Key: {model_key}\n"
debug_log += f"Prompt: {prompt}\n"
debug_log += f"Negative Prompt: {negative_prompt}\n"
debug_log += f"Steps: {num_inference_steps}, CFG Scale: {guidance_scale}\n"
debug_log += f"Seed: {seed}\n"
debug_log += f"Reference Image Provided: {'Yes' if reference_image_pil else 'No'}\n"
debug_log += f"IP Adapter Scale: {ip_adapter_scale}\n"
debug_log += f"Device: {DEVICE}, Dtype: {TORCH_DTYPE}\n\n"
pipeline = None # Ensure pipeline is defined in this scope
try:
if not model_key:
raise ValueError("No model selected.")
config = MODEL_CONFIG[model_key]
repo_id = config["repo_id"]
is_lora = config["is_lora"]
base_model = config["base_model"]
pipeline_class = config["pipeline_class"]
ip_adapter_repo = config["ip_adapter_repo"]
ip_adapter_weights = config["ip_adapter_weights"]
# ip_adapter_image_encoder = config["ip_adapter_image_encoder"] # Encoder loaded via IP-Adapter itself usually
# --- Model Loading ---
load_start_time = time.time()
debug_log += f"[{time.time() - start_time:.2f}s] Cleaning up memory before loading...\n"
progress(0.1, desc="Cleaning up memory...")
cleanup_memory() # Attempt cleanup before loading new model
debug_log += f"[{time.time() - start_time:.2f}s] Loading model: {'LoRA ' + repo_id if is_lora else repo_id}...\n"
progress(0.2, desc=f"Loading {'LoRA ' + repo_id if is_lora else repo_id}...")
model_load_id = base_model if is_lora else repo_id
debug_log += f"[{time.time() - start_time:.2f}s] Base/Model ID for pipeline: {model_load_id}\n"
pipeline = pipeline_class.from_pretrained(
model_load_id,
torch_dtype=TORCH_DTYPE,
# Add any specific args needed for the pipeline class if necessary
# safety_checker=None, # Disable safety checker if needed/causes issues on CPU
# requires_safety_checker=False,
)
pipeline.to(DEVICE)
debug_log += f"[{time.time() - start_time:.2f}s] Base pipeline loaded onto {DEVICE}.\n"
if is_lora:
lora_load_start = time.time()
debug_log += f"[{time.time() - start_time:.2f}s] Loading LoRA weights from {repo_id}...\n"
progress(0.4, desc=f"Loading LoRA {repo_id}...")
try:
lora_filename = config.get("lora_filename") # Get specific filename if provided
if lora_filename:
debug_log += f"[{time.time() - start_time:.2f}s] Using specified LoRA filename: {lora_filename}\n"
pipeline.load_lora_weights(repo_id, weight_name=lora_filename, torch_dtype=TORCH_DTYPE)
else:
# Let diffusers try to auto-detect standard names like .safetensors or .bin
debug_log += f"[{time.time() - start_time:.2f}s] Attempting auto-detection of LoRA filename.\n"
pipeline.load_lora_weights(repo_id, torch_dtype=TORCH_DTYPE)
# When using LoRA with diffusers >= 0.22, explicitly fuse *or* set adapters
# pipeline.fuse_lora() # Fuse creates a new pipeline state (might use more memory)
pipeline.set_adapters(pipeline.get_active_adapters(), adapter_weights=1.0) # Recommended for flexibility
debug_log += f"[{time.time() - start_time:.2f}s] LoRA weights loaded and adapters set in {time.time() - lora_load_start:.2f}s.\n"
except Exception as e:
debug_log += f"[{time.time() - start_time:.2f}s] ERROR loading LoRA: {e}. Check LoRA repo structure/filename.\n"
# Decide whether to continue without LoRA or raise error
raise ValueError(f"Failed to load LoRA weights for {repo_id}: {e}")
# --- IP Adapter Loading ---
if reference_image_pil and ip_adapter_scale > 0:
ip_load_start = time.time()
debug_log += f"[{time.time() - start_time:.2f}s] Loading IP-Adapter: {ip_adapter_repo} ({ip_adapter_weights})...\n"
progress(0.6, desc="Loading IP-Adapter...")
try:
# Ensure the pipeline has the load_ip_adapter method
if not hasattr(pipeline, "load_ip_adapter"):
raise AttributeError("The current pipeline class does not support load_ip_adapter. Check diffusers version or pipeline type.")
pipeline.load_ip_adapter(
ip_adapter_repo,
subfolder="models", # Common subfolder, adjust if needed
weight_name=ip_adapter_weights,
# image_encoder_folder=ip_adapter_image_encoder # Let diffusers handle encoder loading usually
)
pipeline.set_ip_adapter_scale(ip_adapter_scale)
debug_log += f"[{time.time() - start_time:.2f}s] IP-Adapter loaded and scale set ({ip_adapter_scale}) in {time.time() - ip_load_start:.2f}s.\n"
# Prepare the image for IP-Adapter (often just needs to be a PIL image)
ip_image = reference_image_pil.convert("RGB")
debug_log += f"[{time.time() - start_time:.2f}s] Reference image prepared for IP-Adapter.\n"
except Exception as e:
debug_log += f"[{time.time() - start_time:.2f}s] WARNING: Failed to load IP-Adapter: {e}. Proceeding without image guidance.\n"
ip_image = None
ip_adapter_scale = 0 # Effectively disable it if loading failed
pipeline.set_ip_adapter_scale(0) # Ensure scale is 0
else:
ip_image = None
if hasattr(pipeline, "set_ip_adapter_scale"):
pipeline.set_ip_adapter_scale(0) # Ensure scale is 0 if no image/scale=0
debug_log += f"[{time.time() - start_time:.2f}s] No reference image provided or IP Adapter scale is 0. Skipping IP-Adapter loading.\n"
debug_log += f"[{time.time() - start_time:.2f}s] Total Model & IP-Adapter Loading time: {time.time() - load_start_time:.2f}s\n"
# --- Generation ---
gen_start_time = time.time()
debug_log += f"[{time.time() - start_time:.2f}s] Starting generation...\n"
progress(0.7, desc="Generating image...")
# Handle seed
if seed == -1:
seed = random.randint(0, 2**32 - 1)
debug_log += f"[{time.time() - start_time:.2f}s] Using random seed: {seed}\n"
generator = torch.Generator(device=DEVICE).manual_seed(seed)
# Prepare arguments for pipeline call
pipeline_args = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": generator,
}
# Add IP-Adapter image if it's loaded and ready
if ip_image is not None and hasattr(pipeline, "set_ip_adapter_scale") and ip_adapter_scale > 0:
pipeline_args["ip_adapter_image"] = ip_image
# Scale was set earlier with set_ip_adapter_scale
debug_log += f"[{time.time() - start_time:.2f}s] Passing reference image to pipeline with IP scale {ip_adapter_scale}.\n"
else:
debug_log += f"[{time.time() - start_time:.2f}s] Not passing reference image to pipeline.\n"
# Run inference
with torch.inference_mode(): # More modern than no_grad for inference
output_image = pipeline(**pipeline_args).images[0]
gen_end_time = time.time()
debug_log += f"[{time.time() - start_time:.2f}s] Generation finished in {gen_end_time - gen_start_time:.2f}s.\n"
# --- Cleanup ---
debug_log += f"[{time.time() - start_time:.2f}s] Unloading model from memory (CPU strategy)...\n"
progress(0.95, desc="Cleaning up...")
del pipeline # Explicitly delete pipeline
cleanup_memory() # Call garbage collection
total_time = time.time() - start_time
debug_log += f"\n--- Total time: {total_time:.2f} seconds ---\n"
return output_image, debug_log
except Exception as e:
logger.exception(f"Error during generation for model {model_key}") # Log full traceback
error_time = time.time() - start_time
debug_log += f"\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
debug_log += f"ERROR occurred after {error_time:.2f}s:\n{e}\n"
debug_log += f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
# Try cleanup even on error
if 'pipeline' in locals() and pipeline is not None:
del pipeline
cleanup_memory()
# Return None for image, and the log containing the error
return None, debug_log
# --- Gradio Interface ---
css = """
#warning {
background-color: #FFCCCB; /* Light red */
padding: 10px;
border-radius: 5px;
text-align: center;
font-weight: bold;
}
#debug_log_area textarea {
font-family: monospace;
font-size: 10px; /* Smaller font for logs */
white-space: pre-wrap; /* Wrap long lines */
word-wrap: break-word; /* Break words if necessary */
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# YouTube Thumbnail Generator with IP-Adapter")
gr.Markdown(
"Select a thumbnail model, provide a text prompt, and optionally upload a reference image "
"to guide the generation using IP-Adapter."
)
gr.HTML("<div id='warning'>⚠️ Warning: Inference on CPU is VERY SLOW (minutes per image, especially SDXL models). Please be patient.</div>")
with gr.Row():
with gr.Column(scale=1):
model_dropdown = gr.Dropdown(
label="Select Thumbnail Model",
choices=AVAILABLE_MODELS,
value=AVAILABLE_MODELS[0] if AVAILABLE_MODELS else None,
)
prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="e.g., Epic landscape, dramatic lighting, YouTube thumbnail style")
negative_prompt_input = gr.Textbox(label="Negative Prompt", lines=2, placeholder="e.g., blurry, low quality, text, signature, watermark")
reference_image_input = gr.Image(label="Reference Image (for IP-Adapter)", type="pil", sources=["upload"])
with gr.Accordion("Advanced Settings", open=False):
steps_slider = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=30, step=1)
cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=20.0, value=7.0, step=0.5)
ip_adapter_scale_slider = gr.Slider(label="IP-Adapter Scale", minimum=0.0, maximum=1.5, value=0.6, step=0.05,
info="Strength of the reference image influence (0 = disabled).")
seed_input = gr.Number(label="Seed", value=-1, precision=0, info="-1 for random seed")
generate_button = gr.Button("Generate Thumbnail", variant="primary")
with gr.Column(scale=1):
output_image = gr.Image(label="Generated Thumbnail", type="pil")
debug_output = gr.Textbox(label="Debug Log", lines=20, interactive=False, elem_id="debug_log_area")
generate_button.click(
fn=generate_thumbnail,
inputs=[
model_dropdown,
prompt_input,
negative_prompt_input,
reference_image_input,
steps_slider,
cfg_slider,
seed_input,
ip_adapter_scale_slider
],
outputs=[output_image, debug_output]
)
# --- Launch ---
if __name__ == "__main__":
logger.info("Starting Gradio App...")
# Queueing is important for handling multiple users on Spaces, even if slow
demo.queue().launch(debug=True) # debug=True provides Gradio debug info in console |