sdafd commited on
Commit
c345460
·
verified ·
1 Parent(s): 0ba3b86

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +348 -0
app.py ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from diffusers import StableDiffusionPipeline, StableDiffusionXLImg2ImgPipeline, AutoPipelineForText2Image
4
+ from diffusers.utils import load_image
5
+ from PIL import Image
6
+ import time
7
+ import random
8
+ import os
9
+ import gc # Garbage collector
10
+ import logging
11
+
12
+ # --- Configuration ---
13
+
14
+ # Setup basic logging
15
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
16
+ logger = logging.getLogger(__name__)
17
+
18
+ # Ensure CPU is used
19
+ DEVICE = "cpu"
20
+ TORCH_DTYPE = torch.float32 # float16/bfloat16 not practical on CPU
21
+
22
+ # Model definitions
23
+ # We need to know the base model for LoRAs and compatible IP-Adapters
24
+ MODEL_CONFIG = {
25
+ "BlaireSilver13/youtube-thumbnail": {
26
+ "repo_id": "BlaireSilver13/youtube-thumbnail",
27
+ "is_lora": False,
28
+ "base_model": None, # It's a full model
29
+ "pipeline_class": StableDiffusionPipeline,
30
+ "ip_adapter_repo": "h94/IP-Adapter", # Standard SD 1.5 IP-Adapter
31
+ "ip_adapter_weights": "ip-adapter_sd15.bin",
32
+ "ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
33
+ },
34
+ "itzzdeep/youtube-thumbnails-sdxl-lora": {
35
+ "repo_id": "itzzdeep/youtube-thumbnails-sdxl-lora",
36
+ "is_lora": True,
37
+ "lora_filename": "pytorch_lora_weights.safetensors", # Check repo for actual filename if different
38
+ "base_model": "stabilityai/stable-diffusion-xl-base-1.0",
39
+ "pipeline_class": AutoPipelineForText2Image, # Handles SDXL loading better
40
+ "ip_adapter_repo": "h94/IP-Adapter", # SDXL IP-Adapter repo
41
+ "ip_adapter_weights": "ip-adapter-plus_sdxl_vit-h.bin", # SDXL weights
42
+ "ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K" # Usually the same encoder repo
43
+ },
44
+ "justmalhar/flux-thumbnails-v3": {
45
+ "repo_id": "justmalhar/flux-thumbnails-v3",
46
+ "is_lora": False, # Assuming this is a full SD 1.5 fine-tune based on common practice
47
+ "base_model": None,
48
+ "pipeline_class": StableDiffusionPipeline,
49
+ "ip_adapter_repo": "h94/IP-Adapter",
50
+ "ip_adapter_weights": "ip-adapter_sd15.bin",
51
+ "ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
52
+ },
53
+ "saq1b/mrbeast-thumbnail-style": {
54
+ "repo_id": "saq1b/mrbeast-thumbnail-style",
55
+ "is_lora": True, # This is typically a LoRA
56
+ "lora_filename": None, # Auto-detect or specify e.g., "pytorch_lora_weights.safetensors"
57
+ "base_model": "runwayml/stable-diffusion-v1-5", # Common base for SD 1.5 LoRAs
58
+ "pipeline_class": StableDiffusionPipeline,
59
+ "ip_adapter_repo": "h94/IP-Adapter",
60
+ "ip_adapter_weights": "ip-adapter_sd15.bin",
61
+ "ip_adapter_image_encoder": "laion/CLIP-ViT-H-14-laion2B-s32B-b79K"
62
+ }
63
+ }
64
+
65
+ AVAILABLE_MODELS = list(MODEL_CONFIG.keys())
66
+
67
+ # Global variable to potentially hold the pipeline to avoid reloading *if memory allows*
68
+ # NOTE: On restricted CPU environments, it's SAFER to load inside the function.
69
+ # Set to None initially. Let's load dynamically inside the function for safety.
70
+ # current_pipeline = None
71
+ # current_model_key = None
72
+
73
+ # --- Helper Functions ---
74
+
75
+ def cleanup_memory():
76
+ """Attempts to free GPU memory (less relevant for CPU but good practice)."""
77
+ logger.info("Attempting to clean up memory...")
78
+ try:
79
+ # If a pipeline exists globally (if we change strategy), unload it
80
+ # global current_pipeline, current_model_key
81
+ # if current_pipeline is not None:
82
+ # logger.info(f"Unloading model {current_model_key} from memory.")
83
+ # del current_pipeline
84
+ # current_pipeline = None
85
+ # current_model_key = None
86
+
87
+ gc.collect()
88
+ if torch.cuda.is_available(): # Only run cuda cache empty if cuda is present
89
+ torch.cuda.empty_cache()
90
+ logger.info("Memory cleanup potentially done.")
91
+ except Exception as e:
92
+ logger.error(f"Error during memory cleanup: {e}")
93
+
94
+
95
+ # --- Main Generation Function ---
96
+
97
+ def generate_thumbnail(
98
+ model_key: str,
99
+ prompt: str,
100
+ negative_prompt: str,
101
+ reference_image_pil: Image.Image | None, # Gradio provides PIL image
102
+ num_inference_steps: int,
103
+ guidance_scale: float,
104
+ seed: int,
105
+ ip_adapter_scale: float,
106
+ progress=gr.Progress(track_ τότε=True)
107
+ ):
108
+ """Generates an image using the selected model, IP-Adapter, and settings."""
109
+ start_time = time.time()
110
+ debug_log = f"--- Generation Log ({time.strftime('%Y-%m-%d %H:%M:%S')}) ---\n"
111
+ debug_log += f"Selected Model Key: {model_key}\n"
112
+ debug_log += f"Prompt: {prompt}\n"
113
+ debug_log += f"Negative Prompt: {negative_prompt}\n"
114
+ debug_log += f"Steps: {num_inference_steps}, CFG Scale: {guidance_scale}\n"
115
+ debug_log += f"Seed: {seed}\n"
116
+ debug_log += f"Reference Image Provided: {'Yes' if reference_image_pil else 'No'}\n"
117
+ debug_log += f"IP Adapter Scale: {ip_adapter_scale}\n"
118
+ debug_log += f"Device: {DEVICE}, Dtype: {TORCH_DTYPE}\n\n"
119
+
120
+ pipeline = None # Ensure pipeline is defined in this scope
121
+
122
+ try:
123
+ if not model_key:
124
+ raise ValueError("No model selected.")
125
+
126
+ config = MODEL_CONFIG[model_key]
127
+ repo_id = config["repo_id"]
128
+ is_lora = config["is_lora"]
129
+ base_model = config["base_model"]
130
+ pipeline_class = config["pipeline_class"]
131
+ ip_adapter_repo = config["ip_adapter_repo"]
132
+ ip_adapter_weights = config["ip_adapter_weights"]
133
+ # ip_adapter_image_encoder = config["ip_adapter_image_encoder"] # Encoder loaded via IP-Adapter itself usually
134
+
135
+ # --- Model Loading ---
136
+ load_start_time = time.time()
137
+ debug_log += f"[{time.time() - start_time:.2f}s] Cleaning up memory before loading...\n"
138
+ progress(0.1, desc="Cleaning up memory...")
139
+ cleanup_memory() # Attempt cleanup before loading new model
140
+
141
+ debug_log += f"[{time.time() - start_time:.2f}s] Loading model: {'LoRA ' + repo_id if is_lora else repo_id}...\n"
142
+ progress(0.2, desc=f"Loading {'LoRA ' + repo_id if is_lora else repo_id}...")
143
+
144
+ model_load_id = base_model if is_lora else repo_id
145
+ debug_log += f"[{time.time() - start_time:.2f}s] Base/Model ID for pipeline: {model_load_id}\n"
146
+
147
+ pipeline = pipeline_class.from_pretrained(
148
+ model_load_id,
149
+ torch_dtype=TORCH_DTYPE,
150
+ # Add any specific args needed for the pipeline class if necessary
151
+ # safety_checker=None, # Disable safety checker if needed/causes issues on CPU
152
+ # requires_safety_checker=False,
153
+ )
154
+ pipeline.to(DEVICE)
155
+ debug_log += f"[{time.time() - start_time:.2f}s] Base pipeline loaded onto {DEVICE}.\n"
156
+
157
+ if is_lora:
158
+ lora_load_start = time.time()
159
+ debug_log += f"[{time.time() - start_time:.2f}s] Loading LoRA weights from {repo_id}...\n"
160
+ progress(0.4, desc=f"Loading LoRA {repo_id}...")
161
+ try:
162
+ lora_filename = config.get("lora_filename") # Get specific filename if provided
163
+ if lora_filename:
164
+ debug_log += f"[{time.time() - start_time:.2f}s] Using specified LoRA filename: {lora_filename}\n"
165
+ pipeline.load_lora_weights(repo_id, weight_name=lora_filename, torch_dtype=TORCH_DTYPE)
166
+ else:
167
+ # Let diffusers try to auto-detect standard names like .safetensors or .bin
168
+ debug_log += f"[{time.time() - start_time:.2f}s] Attempting auto-detection of LoRA filename.\n"
169
+ pipeline.load_lora_weights(repo_id, torch_dtype=TORCH_DTYPE)
170
+
171
+ # When using LoRA with diffusers >= 0.22, explicitly fuse *or* set adapters
172
+ # pipeline.fuse_lora() # Fuse creates a new pipeline state (might use more memory)
173
+ pipeline.set_adapters(pipeline.get_active_adapters(), adapter_weights=1.0) # Recommended for flexibility
174
+ debug_log += f"[{time.time() - start_time:.2f}s] LoRA weights loaded and adapters set in {time.time() - lora_load_start:.2f}s.\n"
175
+
176
+ except Exception as e:
177
+ debug_log += f"[{time.time() - start_time:.2f}s] ERROR loading LoRA: {e}. Check LoRA repo structure/filename.\n"
178
+ # Decide whether to continue without LoRA or raise error
179
+ raise ValueError(f"Failed to load LoRA weights for {repo_id}: {e}")
180
+
181
+ # --- IP Adapter Loading ---
182
+ if reference_image_pil and ip_adapter_scale > 0:
183
+ ip_load_start = time.time()
184
+ debug_log += f"[{time.time() - start_time:.2f}s] Loading IP-Adapter: {ip_adapter_repo} ({ip_adapter_weights})...\n"
185
+ progress(0.6, desc="Loading IP-Adapter...")
186
+ try:
187
+ # Ensure the pipeline has the load_ip_adapter method
188
+ if not hasattr(pipeline, "load_ip_adapter"):
189
+ raise AttributeError("The current pipeline class does not support load_ip_adapter. Check diffusers version or pipeline type.")
190
+
191
+ pipeline.load_ip_adapter(
192
+ ip_adapter_repo,
193
+ subfolder="models", # Common subfolder, adjust if needed
194
+ weight_name=ip_adapter_weights,
195
+ # image_encoder_folder=ip_adapter_image_encoder # Let diffusers handle encoder loading usually
196
+ )
197
+ pipeline.set_ip_adapter_scale(ip_adapter_scale)
198
+ debug_log += f"[{time.time() - start_time:.2f}s] IP-Adapter loaded and scale set ({ip_adapter_scale}) in {time.time() - ip_load_start:.2f}s.\n"
199
+ # Prepare the image for IP-Adapter (often just needs to be a PIL image)
200
+ ip_image = reference_image_pil.convert("RGB")
201
+ debug_log += f"[{time.time() - start_time:.2f}s] Reference image prepared for IP-Adapter.\n"
202
+
203
+ except Exception as e:
204
+ debug_log += f"[{time.time() - start_time:.2f}s] WARNING: Failed to load IP-Adapter: {e}. Proceeding without image guidance.\n"
205
+ ip_image = None
206
+ ip_adapter_scale = 0 # Effectively disable it if loading failed
207
+ pipeline.set_ip_adapter_scale(0) # Ensure scale is 0
208
+ else:
209
+ ip_image = None
210
+ if hasattr(pipeline, "set_ip_adapter_scale"):
211
+ pipeline.set_ip_adapter_scale(0) # Ensure scale is 0 if no image/scale=0
212
+ debug_log += f"[{time.time() - start_time:.2f}s] No reference image provided or IP Adapter scale is 0. Skipping IP-Adapter loading.\n"
213
+
214
+
215
+ debug_log += f"[{time.time() - start_time:.2f}s] Total Model & IP-Adapter Loading time: {time.time() - load_start_time:.2f}s\n"
216
+
217
+
218
+ # --- Generation ---
219
+ gen_start_time = time.time()
220
+ debug_log += f"[{time.time() - start_time:.2f}s] Starting generation...\n"
221
+ progress(0.7, desc="Generating image...")
222
+
223
+ # Handle seed
224
+ if seed == -1:
225
+ seed = random.randint(0, 2**32 - 1)
226
+ debug_log += f"[{time.time() - start_time:.2f}s] Using random seed: {seed}\n"
227
+ generator = torch.Generator(device=DEVICE).manual_seed(seed)
228
+
229
+ # Prepare arguments for pipeline call
230
+ pipeline_args = {
231
+ "prompt": prompt,
232
+ "negative_prompt": negative_prompt,
233
+ "num_inference_steps": num_inference_steps,
234
+ "guidance_scale": guidance_scale,
235
+ "generator": generator,
236
+ }
237
+
238
+ # Add IP-Adapter image if it's loaded and ready
239
+ if ip_image is not None and hasattr(pipeline, "set_ip_adapter_scale") and ip_adapter_scale > 0:
240
+ pipeline_args["ip_adapter_image"] = ip_image
241
+ # Scale was set earlier with set_ip_adapter_scale
242
+ debug_log += f"[{time.time() - start_time:.2f}s] Passing reference image to pipeline with IP scale {ip_adapter_scale}.\n"
243
+ else:
244
+ debug_log += f"[{time.time() - start_time:.2f}s] Not passing reference image to pipeline.\n"
245
+
246
+
247
+ # Run inference
248
+ with torch.inference_mode(): # More modern than no_grad for inference
249
+ output_image = pipeline(**pipeline_args).images[0]
250
+
251
+ gen_end_time = time.time()
252
+ debug_log += f"[{time.time() - start_time:.2f}s] Generation finished in {gen_end_time - gen_start_time:.2f}s.\n"
253
+
254
+ # --- Cleanup ---
255
+ debug_log += f"[{time.time() - start_time:.2f}s] Unloading model from memory (CPU strategy)...\n"
256
+ progress(0.95, desc="Cleaning up...")
257
+ del pipeline # Explicitly delete pipeline
258
+ cleanup_memory() # Call garbage collection
259
+
260
+ total_time = time.time() - start_time
261
+ debug_log += f"\n--- Total time: {total_time:.2f} seconds ---\n"
262
+
263
+ return output_image, debug_log
264
+
265
+ except Exception as e:
266
+ logger.exception(f"Error during generation for model {model_key}") # Log full traceback
267
+ error_time = time.time() - start_time
268
+ debug_log += f"\n\n!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
269
+ debug_log += f"ERROR occurred after {error_time:.2f}s:\n{e}\n"
270
+ debug_log += f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!\n"
271
+ # Try cleanup even on error
272
+ if 'pipeline' in locals() and pipeline is not None:
273
+ del pipeline
274
+ cleanup_memory()
275
+ # Return None for image, and the log containing the error
276
+ return None, debug_log
277
+
278
+
279
+ # --- Gradio Interface ---
280
+
281
+ css = """
282
+ #warning {
283
+ background-color: #FFCCCB; /* Light red */
284
+ padding: 10px;
285
+ border-radius: 5px;
286
+ text-align: center;
287
+ font-weight: bold;
288
+ }
289
+ #debug_log_area textarea {
290
+ font-family: monospace;
291
+ font-size: 10px; /* Smaller font for logs */
292
+ white-space: pre-wrap; /* Wrap long lines */
293
+ word-wrap: break-word; /* Break words if necessary */
294
+ }
295
+ """
296
+
297
+ with gr.Blocks(css=css) as demo:
298
+ gr.Markdown("# YouTube Thumbnail Generator with IP-Adapter")
299
+ gr.Markdown(
300
+ "Select a thumbnail model, provide a text prompt, and optionally upload a reference image "
301
+ "to guide the generation using IP-Adapter."
302
+ )
303
+ gr.HTML("<div id='warning'>⚠️ Warning: Inference on CPU is VERY SLOW (minutes per image, especially SDXL models). Please be patient.</div>")
304
+
305
+ with gr.Row():
306
+ with gr.Column(scale=1):
307
+ model_dropdown = gr.Dropdown(
308
+ label="Select Thumbnail Model",
309
+ choices=AVAILABLE_MODELS,
310
+ value=AVAILABLE_MODELS[0] if AVAILABLE_MODELS else None,
311
+ )
312
+ prompt_input = gr.Textbox(label="Prompt", lines=3, placeholder="e.g., Epic landscape, dramatic lighting, YouTube thumbnail style")
313
+ negative_prompt_input = gr.Textbox(label="Negative Prompt", lines=2, placeholder="e.g., blurry, low quality, text, signature, watermark")
314
+ reference_image_input = gr.Image(label="Reference Image (for IP-Adapter)", type="pil", source="upload")
315
+
316
+ with gr.Accordion("Advanced Settings", open=False):
317
+ steps_slider = gr.Slider(label="Inference Steps", minimum=10, maximum=100, value=30, step=1)
318
+ cfg_slider = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=20.0, value=7.0, step=0.5)
319
+ ip_adapter_scale_slider = gr.Slider(label="IP-Adapter Scale", minimum=0.0, maximum=1.5, value=0.6, step=0.05,
320
+ info="Strength of the reference image influence (0 = disabled).")
321
+ seed_input = gr.Number(label="Seed", value=-1, precision=0, info="-1 for random seed")
322
+
323
+ generate_button = gr.Button("Generate Thumbnail", variant="primary")
324
+
325
+ with gr.Column(scale=1):
326
+ output_image = gr.Image(label="Generated Thumbnail", type="pil")
327
+ debug_output = gr.Textbox(label="Debug Log", lines=20, interactive=False, elem_id="debug_log_area")
328
+
329
+ generate_button.click(
330
+ fn=generate_thumbnail,
331
+ inputs=[
332
+ model_dropdown,
333
+ prompt_input,
334
+ negative_prompt_input,
335
+ reference_image_input,
336
+ steps_slider,
337
+ cfg_slider,
338
+ seed_input,
339
+ ip_adapter_scale_slider
340
+ ],
341
+ outputs=[output_image, debug_output]
342
+ )
343
+
344
+ # --- Launch ---
345
+ if __name__ == "__main__":
346
+ logger.info("Starting Gradio App...")
347
+ # Queueing is important for handling multiple users on Spaces, even if slow
348
+ demo.queue().launch(debug=True) # debug=True provides Gradio debug info in console