|
# CondInst |
|
|
|
> [CondInst: Conditional Convolutions for Instance |
|
> Segmentation](https://arxiv.org/pdf/2003.05664.pdf) |
|
|
|
<!-- [ALGORITHM] --> |
|
|
|
## Abstract |
|
|
|
We propose a simple yet effective instance segmentation framework, termed CondInst (conditional convolutions for instance segmentation). Top-performing instance segmentation methods such as Mask |
|
R-CNN rely on ROI operations (typically ROIPool or ROIAlign) to |
|
obtain the final instance masks. In contrast, we propose to solve instance segmentation from a new perspective. Instead of using instancewise ROIs as inputs to a network of fixed weights, we employ dynamic |
|
instance-aware networks, conditioned on instances. CondInst enjoys two |
|
advantages: 1) Instance segmentation is solved by a fully convolutional |
|
network, eliminating the need for ROI cropping and feature alignment. |
|
2\) Due to the much improved capacity of dynamically-generated conditional convolutions, the mask head can be very compact (e.g., 3 conv. |
|
layers, each having only 8 channels), leading to significantly faster inference. We demonstrate a simpler instance segmentation method that can |
|
achieve improved performance in both accuracy and inference speed. On |
|
the COCO dataset, we outperform a few recent methods including welltuned Mask R-CNN baselines, without longer training schedules needed. |
|
|
|
<div align=center> |
|
<img src="https://user-images.githubusercontent.com/57584090/203303488-3dbc36da-09a6-4dc8-be9d-d9af27bd1234.png"/> |
|
</div> |
|
|
|
## Results and Models |
|
|
|
| Backbone | Style | MS train | Lr schd | bbox AP | mask AP | Config | Download | |
|
| :------: | :-----: | :------: | :-----: | :-----: | :-----: | :-------------------------------------------------------: | :----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | |
|
| R-50 | pytorch | Y | 1x | 39.8 | 36.0 | [config](./condinst_r50_fpn_ms-poly-90k_coco_instance.py) | [model](https://download.openmmlab.com/mmdetection/v3.0/condinst/condinst_r50_fpn_ms-poly-90k_coco_instance/condinst_r50_fpn_ms-poly-90k_coco_instance_20221129_125223-4c186406.pth) \| [log](https://download.openmmlab.com/mmdetection/v3.0/condinst/condinst_r50_fpn_ms-poly-90k_coco_instance/condinst_r50_fpn_ms-poly-90k_coco_instance_20221129_125223.json) | |
|
|
|
## Citation |
|
|
|
```latex |
|
@inproceedings{tian2020conditional, |
|
title = {Conditional Convolutions for Instance Segmentation}, |
|
author = {Tian, Zhi and Shen, Chunhua and Chen, Hao}, |
|
booktitle = {Proc. Eur. Conf. Computer Vision (ECCV)}, |
|
year = {2020} |
|
} |
|
``` |
|
|