Spaces:
Paused
Paused
# Ultralytics YOLO 🚀, GPL-3.0 license | |
from pathlib import Path | |
from ultralytics import yolo # noqa | |
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight | |
from ultralytics.yolo.configs import get_config | |
from ultralytics.yolo.engine.exporter import Exporter | |
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, yaml_load | |
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml | |
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode | |
# Map head to model, trainer, validator, and predictor classes | |
MODEL_MAP = { | |
"classify": [ | |
ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator', | |
'yolo.TYPE.classify.ClassificationPredictor'], | |
"detect": [ | |
DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator', | |
'yolo.TYPE.detect.DetectionPredictor'], | |
"segment": [ | |
SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator', | |
'yolo.TYPE.segment.SegmentationPredictor']} | |
class YOLO: | |
""" | |
YOLO | |
A python interface which emulates a model-like behaviour by wrapping trainers. | |
""" | |
def __init__(self, model='yolov8n.yaml', type="v8") -> None: | |
""" | |
> Initializes the YOLO object. | |
Args: | |
model (str, Path): model to load or create | |
type (str): Type/version of models to use. Defaults to "v8". | |
""" | |
self.type = type | |
self.ModelClass = None # model class | |
self.TrainerClass = None # trainer class | |
self.ValidatorClass = None # validator class | |
self.PredictorClass = None # predictor class | |
self.model = None # model object | |
self.trainer = None # trainer object | |
self.task = None # task type | |
self.ckpt = None # if loaded from *.pt | |
self.cfg = None # if loaded from *.yaml | |
self.ckpt_path = None | |
self.overrides = {} # overrides for trainer object | |
# Load or create new YOLO model | |
{'.pt': self._load, '.yaml': self._new}[Path(model).suffix](model) | |
def __call__(self, source, **kwargs): | |
return self.predict(source, **kwargs) | |
def _new(self, cfg: str, verbose=True): | |
""" | |
> Initializes a new model and infers the task type from the model definitions. | |
Args: | |
cfg (str): model configuration file | |
verbose (bool): display model info on load | |
""" | |
cfg = check_yaml(cfg) # check YAML | |
cfg_dict = yaml_load(cfg, append_filename=True) # model dict | |
self.task = guess_task_from_head(cfg_dict["head"][-1][-2]) | |
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \ | |
self._guess_ops_from_task(self.task) | |
self.model = self.ModelClass(cfg_dict, verbose=verbose) # initialize | |
self.cfg = cfg | |
def _load(self, weights: str): | |
""" | |
> Initializes a new model and infers the task type from the model head. | |
Args: | |
weights (str): model checkpoint to be loaded | |
""" | |
self.model, self.ckpt = attempt_load_one_weight(weights) | |
self.ckpt_path = weights | |
self.task = self.model.args["task"] | |
self.overrides = self.model.args | |
self._reset_ckpt_args(self.overrides) | |
self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \ | |
self._guess_ops_from_task(self.task) | |
def reset(self): | |
""" | |
> Resets the model modules. | |
""" | |
for m in self.model.modules(): | |
if hasattr(m, 'reset_parameters'): | |
m.reset_parameters() | |
for p in self.model.parameters(): | |
p.requires_grad = True | |
def info(self, verbose=False): | |
""" | |
> Logs model info. | |
Args: | |
verbose (bool): Controls verbosity. | |
""" | |
self.model.info(verbose=verbose) | |
def fuse(self): | |
self.model.fuse() | |
def predict(self, source, **kwargs): | |
""" | |
Visualize prediction. | |
Args: | |
source (str): Accepts all source types accepted by yolo | |
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
""" | |
overrides = self.overrides.copy() | |
overrides["conf"] = 0.25 | |
overrides.update(kwargs) | |
overrides["mode"] = "predict" | |
overrides["save"] = kwargs.get("save", False) # not save files by default | |
predictor = self.PredictorClass(overrides=overrides) | |
predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2) # check image size | |
predictor.setup(model=self.model, source=source) | |
return predictor() | |
def val(self, data=None, **kwargs): | |
""" | |
> Validate a model on a given dataset . | |
Args: | |
data (str): The dataset to validate on. Accepts all formats accepted by yolo | |
**kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs | |
""" | |
overrides = self.overrides.copy() | |
overrides.update(kwargs) | |
overrides["mode"] = "val" | |
args = get_config(config=DEFAULT_CONFIG, overrides=overrides) | |
args.data = data or args.data | |
args.task = self.task | |
validator = self.ValidatorClass(args=args) | |
validator(model=self.model) | |
def export(self, **kwargs): | |
""" | |
> Export model. | |
Args: | |
**kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs | |
""" | |
overrides = self.overrides.copy() | |
overrides.update(kwargs) | |
args = get_config(config=DEFAULT_CONFIG, overrides=overrides) | |
args.task = self.task | |
exporter = Exporter(overrides=args) | |
exporter(model=self.model) | |
def train(self, **kwargs): | |
""" | |
> Trains the model on a given dataset. | |
Args: | |
**kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section. | |
You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed | |
""" | |
overrides = self.overrides.copy() | |
overrides.update(kwargs) | |
if kwargs.get("cfg"): | |
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.") | |
overrides = yaml_load(check_yaml(kwargs["cfg"]), append_filename=True) | |
overrides["task"] = self.task | |
overrides["mode"] = "train" | |
if not overrides.get("data"): | |
raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.") | |
if overrides.get("resume"): | |
overrides["resume"] = self.ckpt_path | |
self.trainer = self.TrainerClass(overrides=overrides) | |
if not overrides.get("resume"): # manually set model only if not resuming | |
self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml) | |
self.model = self.trainer.model | |
self.trainer.train() | |
def to(self, device): | |
""" | |
> Sends the model to the given device. | |
Args: | |
device (str): device | |
""" | |
self.model.to(device) | |
def _guess_ops_from_task(self, task): | |
model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task] | |
# warning: eval is unsafe. Use with caution | |
trainer_class = eval(train_lit.replace("TYPE", f"{self.type}")) | |
validator_class = eval(val_lit.replace("TYPE", f"{self.type}")) | |
predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}")) | |
return model_class, trainer_class, validator_class, predictor_class | |
def _reset_ckpt_args(args): | |
args.pop("device", None) | |
args.pop("project", None) | |
args.pop("name", None) | |
args.pop("batch", None) | |
args.pop("epochs", None) | |
args.pop("cache", None) | |
args.pop("save_json", None) | |