File size: 8,331 Bytes
8b7211f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Ultralytics YOLO 🚀, GPL-3.0 license

from pathlib import Path

from ultralytics import yolo  # noqa
from ultralytics.nn.tasks import ClassificationModel, DetectionModel, SegmentationModel, attempt_load_one_weight
from ultralytics.yolo.configs import get_config
from ultralytics.yolo.engine.exporter import Exporter
from ultralytics.yolo.utils import DEFAULT_CONFIG, LOGGER, yaml_load
from ultralytics.yolo.utils.checks import check_imgsz, check_yaml
from ultralytics.yolo.utils.torch_utils import guess_task_from_head, smart_inference_mode

# Map head to model, trainer, validator, and predictor classes
MODEL_MAP = {
    "classify": [
        ClassificationModel, 'yolo.TYPE.classify.ClassificationTrainer', 'yolo.TYPE.classify.ClassificationValidator',
        'yolo.TYPE.classify.ClassificationPredictor'],
    "detect": [
        DetectionModel, 'yolo.TYPE.detect.DetectionTrainer', 'yolo.TYPE.detect.DetectionValidator',
        'yolo.TYPE.detect.DetectionPredictor'],
    "segment": [
        SegmentationModel, 'yolo.TYPE.segment.SegmentationTrainer', 'yolo.TYPE.segment.SegmentationValidator',
        'yolo.TYPE.segment.SegmentationPredictor']}


class YOLO:
    """
    YOLO

    A python interface which emulates a model-like behaviour by wrapping trainers.
    """

    def __init__(self, model='yolov8n.yaml', type="v8") -> None:
        """
        > Initializes the YOLO object.

        Args:
            model (str, Path): model to load or create
            type (str): Type/version of models to use. Defaults to "v8".
        """
        self.type = type
        self.ModelClass = None  # model class
        self.TrainerClass = None  # trainer class
        self.ValidatorClass = None  # validator class
        self.PredictorClass = None  # predictor class
        self.model = None  # model object
        self.trainer = None  # trainer object
        self.task = None  # task type
        self.ckpt = None  # if loaded from *.pt
        self.cfg = None  # if loaded from *.yaml
        self.ckpt_path = None
        self.overrides = {}  # overrides for trainer object

        # Load or create new YOLO model
        {'.pt': self._load, '.yaml': self._new}[Path(model).suffix](model)

    def __call__(self, source, **kwargs):
        return self.predict(source, **kwargs)

    def _new(self, cfg: str, verbose=True):
        """
        > Initializes a new model and infers the task type from the model definitions.

        Args:
            cfg (str): model configuration file
            verbose (bool): display model info on load
        """
        cfg = check_yaml(cfg)  # check YAML
        cfg_dict = yaml_load(cfg, append_filename=True)  # model dict
        self.task = guess_task_from_head(cfg_dict["head"][-1][-2])
        self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
            self._guess_ops_from_task(self.task)
        self.model = self.ModelClass(cfg_dict, verbose=verbose)  # initialize
        self.cfg = cfg

    def _load(self, weights: str):
        """
        > Initializes a new model and infers the task type from the model head.

        Args:
            weights (str): model checkpoint to be loaded
        """
        self.model, self.ckpt = attempt_load_one_weight(weights)
        self.ckpt_path = weights
        self.task = self.model.args["task"]
        self.overrides = self.model.args
        self._reset_ckpt_args(self.overrides)
        self.ModelClass, self.TrainerClass, self.ValidatorClass, self.PredictorClass = \
            self._guess_ops_from_task(self.task)

    def reset(self):
        """
        > Resets the model modules.
        """
        for m in self.model.modules():
            if hasattr(m, 'reset_parameters'):
                m.reset_parameters()
        for p in self.model.parameters():
            p.requires_grad = True

    def info(self, verbose=False):
        """
        > Logs model info.

        Args:
            verbose (bool): Controls verbosity.
        """
        self.model.info(verbose=verbose)

    def fuse(self):
        self.model.fuse()

    @smart_inference_mode()
    def predict(self, source, **kwargs):
        """
        Visualize prediction.

        Args:
            source (str): Accepts all source types accepted by yolo
            **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
        """
        overrides = self.overrides.copy()
        overrides["conf"] = 0.25
        overrides.update(kwargs)
        overrides["mode"] = "predict"
        overrides["save"] = kwargs.get("save", False)  # not save files by default
        predictor = self.PredictorClass(overrides=overrides)

        predictor.args.imgsz = check_imgsz(predictor.args.imgsz, min_dim=2)  # check image size
        predictor.setup(model=self.model, source=source)
        return predictor()

    @smart_inference_mode()
    def val(self, data=None, **kwargs):
        """
        > Validate a model on a given dataset .

        Args:
            data (str): The dataset to validate on. Accepts all formats accepted by yolo
            **kwargs : Any other args accepted by the validators. To see all args check 'configuration' section in docs
        """
        overrides = self.overrides.copy()
        overrides.update(kwargs)
        overrides["mode"] = "val"
        args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
        args.data = data or args.data
        args.task = self.task

        validator = self.ValidatorClass(args=args)
        validator(model=self.model)

    @smart_inference_mode()
    def export(self, **kwargs):
        """
        > Export model.

        Args:
            **kwargs : Any other args accepted by the predictors. To see all args check 'configuration' section in docs
        """

        overrides = self.overrides.copy()
        overrides.update(kwargs)
        args = get_config(config=DEFAULT_CONFIG, overrides=overrides)
        args.task = self.task

        exporter = Exporter(overrides=args)
        exporter(model=self.model)

    def train(self, **kwargs):
        """
        > Trains the model on a given dataset.

        Args:
            **kwargs (Any): Any number of arguments representing the training configuration. List of all args can be found in 'config' section.
                            You can pass all arguments as a yaml file in `cfg`. Other args are ignored if `cfg` file is passed
        """
        overrides = self.overrides.copy()
        overrides.update(kwargs)
        if kwargs.get("cfg"):
            LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
            overrides = yaml_load(check_yaml(kwargs["cfg"]), append_filename=True)
        overrides["task"] = self.task
        overrides["mode"] = "train"
        if not overrides.get("data"):
            raise AttributeError("dataset not provided! Please define `data` in config.yaml or pass as an argument.")
        if overrides.get("resume"):
            overrides["resume"] = self.ckpt_path

        self.trainer = self.TrainerClass(overrides=overrides)
        if not overrides.get("resume"):  # manually set model only if not resuming
            self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
            self.model = self.trainer.model
        self.trainer.train()

    def to(self, device):
        """
        > Sends the model to the given device.

        Args:
            device (str): device
        """
        self.model.to(device)

    def _guess_ops_from_task(self, task):
        model_class, train_lit, val_lit, pred_lit = MODEL_MAP[task]
        # warning: eval is unsafe. Use with caution
        trainer_class = eval(train_lit.replace("TYPE", f"{self.type}"))
        validator_class = eval(val_lit.replace("TYPE", f"{self.type}"))
        predictor_class = eval(pred_lit.replace("TYPE", f"{self.type}"))

        return model_class, trainer_class, validator_class, predictor_class

    @staticmethod
    def _reset_ckpt_args(args):
        args.pop("device", None)
        args.pop("project", None)
        args.pop("name", None)
        args.pop("batch", None)
        args.pop("epochs", None)
        args.pop("cache", None)
        args.pop("save_json", None)