Spaces:
Running
Running
File size: 6,503 Bytes
b0503ee 84669bc b7577da 7feda08 51568dc 7fc55d1 6d0ac04 51568dc 2389531 51568dc 7fc55d1 51568dc 6ba2176 51568dc 6ba2176 c163eb2 6ba2176 7feda08 e5063d8 3b5e5a8 e5063d8 463d2eb 3b5e5a8 463d2eb 3b5e5a8 463d2eb 3b5e5a8 463d2eb 73bd89d 9e251df e6cd790 9e251df e6cd790 3b5e5a8 e6cd790 3b5e5a8 e6cd790 9e251df e6cd790 73bd89d 9e251df 73bd89d 3b5e5a8 73bd89d 9e251df b815c8c e5063d8 3b5e5a8 e5063d8 3b5e5a8 e5063d8 3b5e5a8 e5063d8 3b5e5a8 e5063d8 3b5e5a8 e5063d8 e6cd790 e5063d8 e6cd790 e5063d8 463d2eb d2a1a53 e5063d8 a256e24 73bd89d 463d2eb 73bd89d 3b5e5a8 463d2eb 3b5e5a8 e5063d8 a4c0f0e c163eb2 51568dc 3b5e5a8 51568dc 3b5e5a8 51568dc 3b5e5a8 73bd89d 51568dc aed9390 a4c0f0e 3b5e5a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import gradio as gr
from transformers import pipeline
import spacy
import subprocess
import nltk
from nltk.corpus import wordnet
# Initialize the English text classification pipeline for AI detection
pipeline_en = pipeline(task="text-classification", model="Hello-SimpleAI/chatgpt-detector-roberta")
# Function to predict the label and score for English text (AI Detection)
def predict_en(text):
res = pipeline_en(text)[0]
return res['label'], res['score']
# Ensure necessary NLTK data is downloaded for Humanifier
nltk.download('wordnet')
nltk.download('omw-1.4')
# Ensure the SpaCy model is installed for Humanifier
try:
nlp = spacy.load("en_core_web_sm")
except OSError:
subprocess.run(["python", "-m", "spacy", "download", "en_core_web_sm"])
nlp = spacy.load("en_core_web_sm")
# Function to get synonyms using NLTK WordNet (Humanifier)
def get_synonyms_nltk(word, pos):
synsets = wordnet.synsets(word, pos=pos)
if synsets:
lemmas = synsets[0].lemmas()
return [lemma.name().replace('_', ' ') for lemma in lemmas]
return []
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
def capitalize_sentences_and_nouns(text):
doc = nlp(text)
corrected_text = []
for sent in doc.sents:
sentence = []
for token in sent:
if token.i == sent.start: # First word of the sentence
sentence.append(token.text.capitalize())
elif token.pos_ == "PROPN": # Proper noun
sentence.append(token.text.capitalize())
else:
sentence.append(token.text)
corrected_text.append(' '.join(sentence))
return ' '.join(corrected_text)
# Function to correct tense errors in a sentence (Tense Correction)
def correct_tense_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.tag_ in {"VBD", "VBN"} and token.lemma_:
# Convert past tense verbs to their base form
corrected_text.append(token.lemma_)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to correct singular/plural errors (Singular/Plural Correction)
def correct_singular_plural_errors(text):
doc = nlp(text)
corrected_text = []
for token in doc:
if token.pos_ == "NOUN":
if token.tag_ == "NN": # Singular noun
if any(child.text.lower() in {'many', 'several', 'few', 'a', 'one'} for child in token.head.children):
corrected_text.append(token.text if token.text.endswith('s') else token.text + 's')
else:
corrected_text.append(token.text)
elif token.tag_ == "NNS": # Plural noun
if any(child.text.lower() in {'a', 'one'} for child in token.head.children):
singular = token.lemma_
corrected_text.append(singular)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Function to check and correct article errors
def correct_article_errors(text):
doc = nlp(text)
corrected_text = []
tokens = list(doc)
for i, token in enumerate(tokens):
if token.text.lower() in {'a', 'an'}:
if i + 1 < len(tokens):
next_token = tokens[i + 1]
if next_token.text[0].lower() in 'aeiou':
corrected_text.append('an')
else:
corrected_text.append('a')
else:
corrected_text.append(token.text)
else:
corrected_text.append(token.text)
return ' '.join(corrected_text)
# Paraphrasing function using SpaCy and NLTK (Humanifier)
def paraphrase_with_spacy_nltk(text):
doc = nlp(text)
paraphrased_words = []
for token in doc:
pos = None
if token.pos_ == "NOUN":
pos = wordnet.NOUN
elif token.pos_ == "VERB":
pos = wordnet.VERB
elif token.pos_ == "ADJ":
pos = wordnet.ADJ
elif token.pos_ == "ADV":
pos = wordnet.ADV
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
# Replace with a synonym only if it's more common and fits the context
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}:
# Avoid replacing with the same word or rare synonyms
synonym = synonyms[0]
if synonym != token.text.lower() and len(synonym.split()) == 1:
paraphrased_words.append(synonym)
else:
paraphrased_words.append(token.text)
else:
paraphrased_words.append(token.text)
paraphrased_sentence = ' '.join(paraphrased_words)
return paraphrased_sentence
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
def paraphrase_and_correct(text):
# Step 1: Paraphrase the text
paraphrased_text = paraphrase_with_spacy_nltk(text)
# Step 2: Apply grammatical corrections on the paraphrased text
corrected_text = correct_article_errors(paraphrased_text)
corrected_text = capitalize_sentences_and_nouns(corrected_text)
corrected_text = correct_singular_plural_errors(corrected_text)
corrected_text = correct_tense_errors(corrected_text)
return corrected_text
# Gradio app setup with two tabs
with gr.Blocks() as demo:
with gr.Tab("AI Detection"):
t1 = gr.Textbox(lines=5, label='Text')
button1 = gr.Button("🤖 Predict!")
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
score1 = gr.Textbox(lines=1, label='Probability')
# Connect the prediction function to the button
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
with gr.Tab("Humanifier"):
text_input = gr.Textbox(lines=10, label="Input Text")
paraphrase_button = gr.Button("Paraphrase & Correct")
output_text = gr.Textbox(label="Paraphrased Text")
# Connect the paraphrasing function to the button
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
# Launch the app with the remaining functionalities
demo.launch()
|