Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -30,7 +30,7 @@ def get_synonyms_nltk(word, pos):
|
|
30 |
synsets = wordnet.synsets(word, pos=pos)
|
31 |
if synsets:
|
32 |
lemmas = synsets[0].lemmas()
|
33 |
-
return [lemma.name() for lemma in lemmas]
|
34 |
return []
|
35 |
|
36 |
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
@@ -55,14 +55,14 @@ def capitalize_sentences_and_nouns(text):
|
|
55 |
def correct_tense_errors(text):
|
56 |
doc = nlp(text)
|
57 |
corrected_text = []
|
|
|
58 |
for token in doc:
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
lemma = wordnet.morphy(token.text, wordnet.VERB) or token.text
|
63 |
-
corrected_text.append(lemma)
|
64 |
else:
|
65 |
corrected_text.append(token.text)
|
|
|
66 |
return ' '.join(corrected_text)
|
67 |
|
68 |
# Function to correct singular/plural errors (Singular/Plural Correction)
|
@@ -72,17 +72,15 @@ def correct_singular_plural_errors(text):
|
|
72 |
|
73 |
for token in doc:
|
74 |
if token.pos_ == "NOUN":
|
75 |
-
# Check if the noun is singular or plural
|
76 |
if token.tag_ == "NN": # Singular noun
|
77 |
-
|
78 |
-
|
79 |
-
corrected_text.append(token.lemma_ + 's')
|
80 |
else:
|
81 |
corrected_text.append(token.text)
|
82 |
elif token.tag_ == "NNS": # Plural noun
|
83 |
-
|
84 |
-
|
85 |
-
corrected_text.append(
|
86 |
else:
|
87 |
corrected_text.append(token.text)
|
88 |
else:
|
@@ -96,13 +94,16 @@ def correct_singular_plural_errors(text):
|
|
96 |
def correct_article_errors(text):
|
97 |
doc = nlp(text)
|
98 |
corrected_text = []
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
|
|
|
|
106 |
else:
|
107 |
corrected_text.append(token.text)
|
108 |
else:
|
@@ -115,28 +116,30 @@ def paraphrase_with_spacy_nltk(text):
|
|
115 |
paraphrased_words = []
|
116 |
|
117 |
for token in doc:
|
118 |
-
# Map SpaCy POS tags to WordNet POS tags
|
119 |
pos = None
|
120 |
-
if token.pos_
|
121 |
pos = wordnet.NOUN
|
122 |
-
elif token.pos_
|
123 |
pos = wordnet.VERB
|
124 |
-
elif token.pos_
|
125 |
pos = wordnet.ADJ
|
126 |
-
elif token.pos_
|
127 |
pos = wordnet.ADV
|
128 |
|
129 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
130 |
|
131 |
-
# Replace with a synonym only if it
|
132 |
-
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
134 |
else:
|
135 |
paraphrased_words.append(token.text)
|
136 |
|
137 |
-
# Join the words back into a sentence
|
138 |
paraphrased_sentence = ' '.join(paraphrased_words)
|
139 |
-
|
140 |
return paraphrased_sentence
|
141 |
|
142 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
@@ -146,15 +149,11 @@ def paraphrase_and_correct(text):
|
|
146 |
|
147 |
# Step 2: Apply grammatical corrections on the paraphrased text
|
148 |
corrected_text = correct_article_errors(paraphrased_text)
|
149 |
-
|
150 |
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
151 |
-
|
152 |
corrected_text = correct_singular_plural_errors(corrected_text)
|
|
|
153 |
|
154 |
-
|
155 |
-
final_text = correct_tense_errors(corrected_text)
|
156 |
-
|
157 |
-
return final_text
|
158 |
|
159 |
# Gradio app setup with two tabs
|
160 |
with gr.Blocks() as demo:
|
@@ -162,18 +161,18 @@ with gr.Blocks() as demo:
|
|
162 |
t1 = gr.Textbox(lines=5, label='Text')
|
163 |
button1 = gr.Button("🤖 Predict!")
|
164 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
165 |
-
score1 = gr.Textbox(lines=1, label='
|
166 |
-
|
167 |
# Connect the prediction function to the button
|
168 |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
169 |
|
170 |
with gr.Tab("Humanifier"):
|
171 |
-
text_input = gr.Textbox(lines=
|
172 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
173 |
output_text = gr.Textbox(label="Paraphrased Text")
|
174 |
-
|
175 |
# Connect the paraphrasing function to the button
|
176 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
177 |
|
178 |
# Launch the app with the remaining functionalities
|
179 |
-
demo.launch()
|
|
|
30 |
synsets = wordnet.synsets(word, pos=pos)
|
31 |
if synsets:
|
32 |
lemmas = synsets[0].lemmas()
|
33 |
+
return [lemma.name().replace('_', ' ') for lemma in lemmas]
|
34 |
return []
|
35 |
|
36 |
# Function to capitalize the first letter of sentences and proper nouns (Humanifier)
|
|
|
55 |
def correct_tense_errors(text):
|
56 |
doc = nlp(text)
|
57 |
corrected_text = []
|
58 |
+
|
59 |
for token in doc:
|
60 |
+
if token.tag_ in {"VBD", "VBN"} and token.lemma_:
|
61 |
+
# Convert past tense verbs to their base form
|
62 |
+
corrected_text.append(token.lemma_)
|
|
|
|
|
63 |
else:
|
64 |
corrected_text.append(token.text)
|
65 |
+
|
66 |
return ' '.join(corrected_text)
|
67 |
|
68 |
# Function to correct singular/plural errors (Singular/Plural Correction)
|
|
|
72 |
|
73 |
for token in doc:
|
74 |
if token.pos_ == "NOUN":
|
|
|
75 |
if token.tag_ == "NN": # Singular noun
|
76 |
+
if any(child.text.lower() in {'many', 'several', 'few', 'a', 'one'} for child in token.head.children):
|
77 |
+
corrected_text.append(token.text if token.text.endswith('s') else token.text + 's')
|
|
|
78 |
else:
|
79 |
corrected_text.append(token.text)
|
80 |
elif token.tag_ == "NNS": # Plural noun
|
81 |
+
if any(child.text.lower() in {'a', 'one'} for child in token.head.children):
|
82 |
+
singular = token.lemma_
|
83 |
+
corrected_text.append(singular)
|
84 |
else:
|
85 |
corrected_text.append(token.text)
|
86 |
else:
|
|
|
94 |
def correct_article_errors(text):
|
95 |
doc = nlp(text)
|
96 |
corrected_text = []
|
97 |
+
tokens = list(doc)
|
98 |
+
|
99 |
+
for i, token in enumerate(tokens):
|
100 |
+
if token.text.lower() in {'a', 'an'}:
|
101 |
+
if i + 1 < len(tokens):
|
102 |
+
next_token = tokens[i + 1]
|
103 |
+
if next_token.text[0].lower() in 'aeiou':
|
104 |
+
corrected_text.append('an')
|
105 |
+
else:
|
106 |
+
corrected_text.append('a')
|
107 |
else:
|
108 |
corrected_text.append(token.text)
|
109 |
else:
|
|
|
116 |
paraphrased_words = []
|
117 |
|
118 |
for token in doc:
|
|
|
119 |
pos = None
|
120 |
+
if token.pos_ == "NOUN":
|
121 |
pos = wordnet.NOUN
|
122 |
+
elif token.pos_ == "VERB":
|
123 |
pos = wordnet.VERB
|
124 |
+
elif token.pos_ == "ADJ":
|
125 |
pos = wordnet.ADJ
|
126 |
+
elif token.pos_ == "ADV":
|
127 |
pos = wordnet.ADV
|
128 |
|
129 |
synonyms = get_synonyms_nltk(token.text.lower(), pos) if pos else []
|
130 |
|
131 |
+
# Replace with a synonym only if it's more common and fits the context
|
132 |
+
if synonyms and token.pos_ in {"NOUN", "VERB", "ADJ", "ADV"}:
|
133 |
+
# Avoid replacing with the same word or rare synonyms
|
134 |
+
synonym = synonyms[0]
|
135 |
+
if synonym != token.text.lower() and len(synonym.split()) == 1:
|
136 |
+
paraphrased_words.append(synonym)
|
137 |
+
else:
|
138 |
+
paraphrased_words.append(token.text)
|
139 |
else:
|
140 |
paraphrased_words.append(token.text)
|
141 |
|
|
|
142 |
paraphrased_sentence = ' '.join(paraphrased_words)
|
|
|
143 |
return paraphrased_sentence
|
144 |
|
145 |
# Combined function: Paraphrase -> Grammar Correction -> Capitalization (Humanifier)
|
|
|
149 |
|
150 |
# Step 2: Apply grammatical corrections on the paraphrased text
|
151 |
corrected_text = correct_article_errors(paraphrased_text)
|
|
|
152 |
corrected_text = capitalize_sentences_and_nouns(corrected_text)
|
|
|
153 |
corrected_text = correct_singular_plural_errors(corrected_text)
|
154 |
+
corrected_text = correct_tense_errors(corrected_text)
|
155 |
|
156 |
+
return corrected_text
|
|
|
|
|
|
|
157 |
|
158 |
# Gradio app setup with two tabs
|
159 |
with gr.Blocks() as demo:
|
|
|
161 |
t1 = gr.Textbox(lines=5, label='Text')
|
162 |
button1 = gr.Button("🤖 Predict!")
|
163 |
label1 = gr.Textbox(lines=1, label='Predicted Label 🎃')
|
164 |
+
score1 = gr.Textbox(lines=1, label='Probability')
|
165 |
+
|
166 |
# Connect the prediction function to the button
|
167 |
button1.click(predict_en, inputs=[t1], outputs=[label1, score1], api_name='predict_en')
|
168 |
|
169 |
with gr.Tab("Humanifier"):
|
170 |
+
text_input = gr.Textbox(lines=10, label="Input Text")
|
171 |
paraphrase_button = gr.Button("Paraphrase & Correct")
|
172 |
output_text = gr.Textbox(label="Paraphrased Text")
|
173 |
+
|
174 |
# Connect the paraphrasing function to the button
|
175 |
paraphrase_button.click(paraphrase_and_correct, inputs=text_input, outputs=output_text)
|
176 |
|
177 |
# Launch the app with the remaining functionalities
|
178 |
+
demo.launch()
|