Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import cv2 | |
from PIL import Image | |
def detect_faces(image , slider ) : | |
# detect faces | |
# convert image in to numpy array | |
image_np = np.array(image) | |
# convert image into gray | |
gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) | |
# use detectmultiscale function to detect faces using haar cascade | |
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") | |
faces = face_cascade.detectMultiScale(gray_image, scaleFactor=slider, minNeighbors=5, minSize=(30, 30)) | |
# draw rectangle along detected faces | |
for (x, y, w, h) in faces: | |
cv2.rectangle(image_np, (x, y), (x+w, y+h), (255, 0, 0), 5) | |
return image_np , len(faces) | |
# slider = gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor") | |
iface = gr.Interface( fn=detect_faces, | |
inputs=["image",gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor")], | |
outputs=["image", gr.Label("faces count ")] , | |
title="Face Detection using Haar Cascade Classifier ", | |
description="Upload an image,and the model will detect faces and draw bounding boxes around them.", | |
) | |
iface.launch() |