import gradio as gr import numpy as np import cv2 from PIL import Image def detect_faces(image , slider ) : # detect faces # convert image in to numpy array image_np = np.array(image) # convert image into gray gray_image = cv2.cvtColor(image_np, cv2.COLOR_RGB2GRAY) # use detectmultiscale function to detect faces using haar cascade face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") faces = face_cascade.detectMultiScale(gray_image, scaleFactor=slider, minNeighbors=5, minSize=(30, 30)) # draw rectangle along detected faces for (x, y, w, h) in faces: cv2.rectangle(image_np, (x, y), (x+w, y+h), (255, 0, 0), 5) return image_np , len(faces) # slider = gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor") iface = gr.Interface( fn=detect_faces, inputs=["image",gr.Slider(minimum=1, maximum=2, step=.1, label="Adjust the ScaleFactor")], outputs=["image", gr.Label("faces count ")] , title="Face Detection using Haar Cascade Classifier ", description="Upload an image,and the model will detect faces and draw bounding boxes around them.", ) iface.launch()