Spaces:
Sleeping
Sleeping
import argparse | |
import json | |
import pdb | |
import jsonlines | |
import util | |
from vllm import LLM, SamplingParams | |
import sys | |
MAX_INT = sys.maxsize | |
INVALID_ANS = "[invalid]" | |
invalid_outputs = [] | |
def remove_boxed(s): | |
left = "\\boxed{" | |
try: | |
assert s[:len(left)] == left | |
assert s[-1] == "}" | |
return s[len(left):-1] | |
except: | |
return None | |
def process_results(doc, completion, answer): | |
split_ans = completion.split('The answer is: ') | |
if len(split_ans) > 1: | |
ans = split_ans[-1] | |
extract_ans_temp = ans.split('.\n')[0] | |
extract_ans_temp = extract_ans_temp.strip() | |
if len(extract_ans_temp)>0 and extract_ans_temp[-1] == '.': | |
extract_ans = extract_ans_temp[0:-1] | |
else: | |
extract_ans = extract_ans_temp | |
extract_ans = extract_ans.strip() | |
if util.is_equiv(extract_ans, answer): | |
return True | |
else: | |
return False | |
else: | |
temp = {'question': doc, 'output': completion, 'answer': answer} | |
invalid_outputs.append(temp) | |
return False | |
def batch_data(data_list, batch_size=1): | |
n = len(data_list) // batch_size | |
batch_data = [] | |
for i in range(n-1): | |
start = i * batch_size | |
end = (i+1)*batch_size | |
batch_data.append(data_list[start:end]) | |
last_start = (n-1) * batch_size | |
last_end = MAX_INT | |
batch_data.append(data_list[last_start:last_end]) | |
return batch_data | |
def test_hendrycks_math(model, data_path, start=0, end=MAX_INT, batch_size=1, tensor_parallel_size=1): | |
hendrycks_math_ins = [] | |
hendrycks_math_answers = [] | |
problem_prompt = ( | |
"Below is an instruction that describes a task. " | |
"Write a response that appropriately completes the request.\n\n" | |
"### Instruction:\n{instruction}\n\n### Response: Let's think step by step." | |
) | |
print('promt =====', problem_prompt) | |
with open(data_path, "r+", encoding="utf8") as f: | |
for idx, item in enumerate(jsonlines.Reader(f)): | |
temp_instr = problem_prompt.format(instruction=item["instruction"]) | |
hendrycks_math_ins.append(temp_instr) | |
solution = item['output'] | |
temp_ans = remove_boxed(util.last_boxed_only_string(solution)) | |
hendrycks_math_answers.append(temp_ans) | |
print('total length ===', len(hendrycks_math_ins)) | |
hendrycks_math_ins = hendrycks_math_ins[start:end] | |
hendrycks_math_answers = hendrycks_math_answers[start:end] | |
print('lenght ====', len(hendrycks_math_ins)) | |
batch_hendrycks_math_ins = batch_data(hendrycks_math_ins, batch_size=batch_size) | |
stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"] | |
sampling_params = SamplingParams(temperature=0, top_p=1, max_tokens=2048, stop=stop_tokens) | |
print('sampleing =====', sampling_params) | |
llm = LLM(model=model,tensor_parallel_size=tensor_parallel_size) | |
res_completions = [] | |
for idx, (prompt, prompt_answer) in enumerate(zip(batch_hendrycks_math_ins, hendrycks_math_answers)): | |
if isinstance(prompt, list): | |
pass | |
else: | |
prompt = [prompt] | |
completions = llm.generate(prompt, sampling_params) | |
for output in completions: | |
prompt_temp = output.prompt | |
generated_text = output.outputs[0].text | |
res_completions.append(generated_text) | |
results = [] | |
for idx, (prompt, completion, prompt_answer) in enumerate(zip(hendrycks_math_ins, res_completions, hendrycks_math_answers)): | |
res = process_results(prompt, completion, prompt_answer) | |
results.append(res) | |
acc = sum(results) / len(results) | |
print('len invalid outputs ====', len(invalid_outputs), ', valid_outputs===', invalid_outputs) | |
print('start===', start, ', end====',end) | |
print('length====', len(results), ', acc====', acc) | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, default='') # model path | |
parser.add_argument("--data_file", type=str, default='') # data path | |
parser.add_argument("--start", type=int, default=0) #start index | |
parser.add_argument("--end", type=int, default=MAX_INT) # end index | |
parser.add_argument("--batch_size", type=int, default=400) # batch_size | |
parser.add_argument("--tensor_parallel_size", type=int, default=8) # tensor_parallel_size | |
return parser.parse_args() | |
if __name__ == "__main__": | |
args = parse_args() | |
test_hendrycks_math(model=args.model, data_path=args.data_file, start=args.start, end=args.end, batch_size=args.batch_size, tensor_parallel_size=args.tensor_parallel_size) | |