File size: 4,700 Bytes
6376749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import argparse
import json
import pdb
import jsonlines

import util
from vllm import LLM, SamplingParams
import sys
MAX_INT = sys.maxsize
INVALID_ANS = "[invalid]"

invalid_outputs = []
def remove_boxed(s):
    left = "\\boxed{"
    try:
        assert s[:len(left)] == left
        assert s[-1] == "}"
        return s[len(left):-1]
    except:
        return None

def process_results(doc, completion, answer):
    split_ans = completion.split('The answer is: ')
    if len(split_ans) > 1:
        ans = split_ans[-1]
        extract_ans_temp = ans.split('.\n')[0]
        extract_ans_temp = extract_ans_temp.strip()
        if len(extract_ans_temp)>0 and extract_ans_temp[-1] == '.':
            extract_ans = extract_ans_temp[0:-1]
        else:
            extract_ans = extract_ans_temp
        extract_ans = extract_ans.strip()
        if util.is_equiv(extract_ans, answer):
            return True
        else:
            return False
    else:
        temp = {'question': doc, 'output': completion, 'answer': answer}
        invalid_outputs.append(temp)
        return False
def batch_data(data_list, batch_size=1):
    n = len(data_list) // batch_size
    batch_data = []
    for i in range(n-1):
        start = i * batch_size
        end = (i+1)*batch_size
        batch_data.append(data_list[start:end])

    last_start = (n-1) * batch_size
    last_end = MAX_INT
    batch_data.append(data_list[last_start:last_end])
    return batch_data

def test_hendrycks_math(model, data_path, start=0, end=MAX_INT, batch_size=1, tensor_parallel_size=1):
    hendrycks_math_ins = []
    hendrycks_math_answers = []
    problem_prompt = (
        "Below is an instruction that describes a task. "
        "Write a response that appropriately completes the request.\n\n"
        "### Instruction:\n{instruction}\n\n### Response: Let's think step by step."
    )
    print('promt =====', problem_prompt)
    with open(data_path, "r+", encoding="utf8") as f:
        for idx, item in enumerate(jsonlines.Reader(f)):
            temp_instr = problem_prompt.format(instruction=item["instruction"])
            hendrycks_math_ins.append(temp_instr)
            solution = item['output']
            temp_ans = remove_boxed(util.last_boxed_only_string(solution))
            hendrycks_math_answers.append(temp_ans)

    print('total length ===', len(hendrycks_math_ins))
    hendrycks_math_ins = hendrycks_math_ins[start:end]
    hendrycks_math_answers = hendrycks_math_answers[start:end]
    print('lenght ====', len(hendrycks_math_ins))
    batch_hendrycks_math_ins = batch_data(hendrycks_math_ins, batch_size=batch_size)

    stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"]
    sampling_params = SamplingParams(temperature=0, top_p=1, max_tokens=2048, stop=stop_tokens)
    print('sampleing =====', sampling_params)
    llm = LLM(model=model,tensor_parallel_size=tensor_parallel_size)
    res_completions = []
    for idx, (prompt, prompt_answer) in enumerate(zip(batch_hendrycks_math_ins, hendrycks_math_answers)):
        if isinstance(prompt, list):
            pass
        else:
            prompt = [prompt]
        completions = llm.generate(prompt, sampling_params)
        for output in completions:
            prompt_temp = output.prompt
            generated_text = output.outputs[0].text
            res_completions.append(generated_text)

    results = []
    for idx, (prompt, completion, prompt_answer) in enumerate(zip(hendrycks_math_ins, res_completions, hendrycks_math_answers)):
        res = process_results(prompt, completion, prompt_answer)
        results.append(res)

    acc = sum(results) / len(results)
    print('len invalid outputs ====', len(invalid_outputs), ', valid_outputs===', invalid_outputs)
    print('start===', start, ', end====',end)
    print('length====', len(results), ', acc====', acc)

def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model", type=str, default='')  # model path
    parser.add_argument("--data_file", type=str, default='')  # data path
    parser.add_argument("--start", type=int, default=0) #start index
    parser.add_argument("--end", type=int, default=MAX_INT)  # end index
    parser.add_argument("--batch_size", type=int, default=400)  # batch_size
    parser.add_argument("--tensor_parallel_size", type=int, default=8)  # tensor_parallel_size
    return parser.parse_args()

if __name__ == "__main__":
    args = parse_args()
    test_hendrycks_math(model=args.model, data_path=args.data_file, start=args.start, end=args.end, batch_size=args.batch_size, tensor_parallel_size=args.tensor_parallel_size)