File size: 16,162 Bytes
059192a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import streamlit as st
import numpy as np
import pandas as pd
import torch
import tensorflow as tf
import cv2
import tempfile
from PIL import Image
from ultralytics import YOLO
from transformers import AutoImageProcessor, AutoModelForImageClassification, pipeline
import matplotlib.pyplot as plt
import time
from datetime import datetime
import os
import requests
from torchvision import transforms
from torchvision.models import mobilenet_v3_large, MobileNet_V3_Large_Weights
import torch.nn.functional as F

# Load Models
species_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
species_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50").eval()
yolo_model = YOLO("yolov8x.pt")
threat_model = pipeline("image-classification", model="nateraw/vit-base-beans")

# Habitat Analysis Model
class HabitatAnalyzer:
    def __init__(self):
        self.CLASSES = ['vegetation', 'water', 'urban', 'barren']
    
    def analyze_vegetation(self, image_array):
        ndvi = (image_array[:, :, 3] - image_array[:, :, 0]) / (image_array[:, :, 3] + image_array[:, :, 0] + 1e-8)
        return ndvi
    
    def detect_land_changes(self, image1, image2):
        return cv2.absdiff(image1, image2)

class SpeciesMonitoringSystem:
    def __init__(self):
        self.detection_model = mobilenet_v3_large(weights=MobileNet_V3_Large_Weights.DEFAULT)
        self.detection_model.eval()
        
        self.species_classes = [
            'deer', 'elk', 'moose', 'bear', 'wolf', 'mountain lion', 'bobcat', 
            'lynx', 'bighorn sheep', 'bison', 'wild boar', 'caribou', 'antelope',
            'coyote', 'jaguar', 'leopard', 'tiger', 'lion', 'gorilla', 'chimpanzee',
            'fox', 'raccoon', 'beaver', 'badger', 'otter', 'wolverine', 'porcupine',
            'skunk', 'opossum', 'armadillo', 'wild cat', 'jackal', 'hyena',
            'marten', 'fisher', 'weasel', 'mink', 'coati', 'monkey', 'lemur',
            'rabbit', 'squirrel', 'chipmunk', 'rat', 'mouse', 'vole', 'mole',
            'shrew', 'bat', 'hedgehog', 'gopher', 'prairie dog', 'muskrat',
            'hamster', 'guinea pig', 'ferret', 'chinchilla', 'dormouse',
            'eagle', 'hawk', 'falcon', 'owl', 'vulture', 'condor', 'crow', 'raven',
            'woodpecker', 'duck', 'goose', 'swan', 'heron', 'crane', 'stork',
            'pelican', 'flamingo', 'penguin', 'ostrich', 'emu', 'kiwi', 'peacock',
            'pheasant', 'quail', 'grouse', 'turkey', 'cardinal', 'bluejay',
            'sparrow', 'finch', 'warbler', 'thrush', 'swallow', 'hummingbird',
            'snake', 'lizard', 'turtle', 'tortoise', 'alligator', 'crocodile',
            'iguana', 'gecko', 'monitor lizard', 'chameleon', 'python', 'cobra',
            'viper', 'rattlesnake', 'boa', 'anaconda', 'skink', 'bearded dragon',
            'frog', 'toad', 'salamander', 'newt', 'axolotl', 'caecilian',
            'tree frog', 'bullfrog', 'fire salamander', 'spotted salamander',
            'salmon', 'trout', 'bass', 'pike', 'catfish', 'carp', 'perch',
            'tuna', 'swordfish', 'marlin', 'shark', 'ray', 'eel', 'sturgeon',
            'barracuda', 'grouper', 'snapper', 'cod', 'halibut', 'flounder',
            'whale', 'dolphin', 'porpoise', 'seal', 'sea lion', 'walrus',
            'orca', 'narwhal', 'beluga', 'manatee', 'dugong', 'sea otter',
            'butterfly', 'moth', 'beetle', 'ant', 'bee', 'wasp', 'spider',
            'scorpion', 'centipede', 'millipede', 'crab', 'lobster', 'shrimp',
            'octopus', 'squid', 'jellyfish', 'starfish', 'sea urchin', 'coral',
            'snail', 'slug', 'earthworm', 'leech'
        ]
        
        self.transform = transforms.Compose([
            transforms.Resize((224, 224)),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.485, 0.456, 0.406],
                               std=[0.229, 0.224, 0.225])
        ])

    def detect_species(self, image):
        img_tensor = self.transform(image).unsqueeze(0)
        
        with torch.no_grad():
            outputs = self.detection_model(img_tensor)
            probabilities = F.softmax(outputs, dim=1)
            
        top_prob, top_class = torch.topk(probabilities, 3)
        results = []
        
        for i in range(3):
            species = self.species_classes[top_class[0][i] % len(self.species_classes)]
            confidence = top_prob[0][i].item() * 100
            results.append((species, confidence))
            
        return results

    def count_population(self, image):
        gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
        blur = cv2.GaussianBlur(gray, (5, 5), 0)
        _, thresh = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY)
        contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        
        img_with_contours = np.array(image).copy()
        cv2.drawContours(img_with_contours, contours, -1, (0, 255, 0), 2)
        
        return len(contours), Image.fromarray(img_with_contours)

    def assess_health(self, image):
        img_array = np.array(image)
        avg_color = np.mean(img_array, axis=(0, 1))
        texture_measure = np.std(img_array)
        color_variation = np.std(avg_color)
        
        color_score = np.mean(avg_color) / 255 * 100
        texture_score = min(100, texture_measure / 2)
        variation_score = min(100, color_variation * 2)
        
        health_score = (color_score * 0.4 + texture_score * 0.3 + variation_score * 0.3)
        
        if health_score > 80:
            status = "Excellent"
        elif health_score > 60:
            status = "Good"
        elif health_score > 40:
            status = "Fair"
        else:
            status = "Poor"
            
        indicators = {
            "Color Vibrancy": color_score,
            "Texture Complexity": texture_score,
            "Pattern Variation": variation_score
        }
            
        return status, health_score, indicators

def detect_threat(image, labels):
    results = threat_model(image)
    for result in results:
        if result['label'] in labels and result['score'] > 0.5:
            return f"{result['label']} Detected with confidence {result['score']:.2f}"
    return "No Threat Detected"

def detect_land_changes(image1_path, image2_path):
    image1 = Image.open(image1_path)
    image2 = Image.open(image2_path)
    
    image_array1 = np.array(image1)
    image_array2 = np.array(image2)
    
    if image_array1.shape != image_array2.shape:
        return "Error: Images must be the same size."
    
    changes = cv2.absdiff(image_array1, image_array2)
    
    col1, col2, col3 = st.columns(3)
    with col1:
        st.image(image1, caption="Image 1")
    with col2:
        st.image(image2, caption="Image 2")
    with col3:
        st.image(changes, caption="Changes Detected")
    
    change_percent = np.sum(changes > 50) / changes.size * 100
    st.write(f"Changed Area: {change_percent:.2f}%")
    
    return changes

def main():
    habitat_analyzer = HabitatAnalyzer()
    
    st.sidebar.title("Navigation")
    option = st.sidebar.radio("Select an Analysis Type:",
                             ["Species Monitoring", "Land Change Detection", "Animal Monitoring", "Threat Detection"])

    if option == "Species Monitoring":
        st.title("Species Identification")
        monitoring_system = SpeciesMonitoringSystem()
    
        uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
        
        if uploaded_file is not None:
            image = Image.open(uploaded_file)
            st.image(image, caption="Uploaded Image", use_column_width=True)
            
            progress_bar = st.progress(0)
            
            with st.spinner("Analyzing image..."):
                col1, col2, col3 = st.columns(3)
                
                progress_bar.progress(30)
                species_results = monitoring_system.detect_species(image)
                
                progress_bar.progress(60)
                count, marked_image = monitoring_system.count_population(image)
                
                progress_bar.progress(90)
                health_status, health_score, health_indicators = monitoring_system.assess_health(image)
                
                with col1:
                    st.subheader("πŸ” Species Detection")
                    for species, confidence in species_results:
                        st.write(f"**{species.title()}**")
                        st.progress(confidence/100)
                        st.caption(f"Confidence: {confidence:.1f}%")
                
                with col2:
                    st.subheader("πŸ‘₯ Population Count")
                    st.write(f"**Detected Animals:** {count}")
                    st.image(marked_image, caption="Detection Visualization", use_column_width=True)
                
                with col3:
                    st.subheader("πŸ’ͺ Health Assessment")
                    st.write(f"**Status:** {health_status}")
                    st.write(f"**Overall Score:** {health_score:.1f}/100")
                    
                    for indicator, value in health_indicators.items():
                        st.write(f"**{indicator}:**")
                        st.progress(value/100)
                        st.caption(f"{value:.1f}%")
            
            progress_bar.progress(100)
            
            st.sidebar.markdown("---")
            st.sidebar.markdown("### Analysis Details")
            st.sidebar.text(f"Analyzed at: {time.strftime('%Y-%m-%d %H:%M:%S')}")
            st.sidebar.text(f"Image size: {image.size}")
            
            st.markdown("---")
            st.subheader("πŸ“Š Export Results")
            
            summary = f"""Wildlife Monitoring Analysis Report
            Date: {time.strftime('%Y-%m-%d %H:%M:%S')}

            Species Detection Results:
            {'-' * 30}
            """
            for species, confidence in species_results:
                summary += f"\n{species.title()}: {confidence:.1f}% confidence"
            
            summary += f"""\n\nPopulation Count:
            {'-' * 30}
            Total detected: {count} individuals

            Health Assessment:
            {'-' * 30}
            Status: {health_status}
            Overall Score: {health_score:.1f}/100
            """
            for indicator, value in health_indicators.items():
                summary += f"\n{indicator}: {value:.1f}%"
            
            st.download_button(
                label="Download Analysis Report",
                data=summary,
                file_name="wildlife_analysis_report.txt",
                mime="text/plain"
            )

    elif option == "Land Change Detection":
        st.title("🌍 Land Change Detection")
        uploaded_file2 = st.file_uploader("Upload first image", type=['tif', 'png', 'jpg'])
        uploaded_file3 = st.file_uploader("Upload second image", type=['tif', 'png', 'jpg'])

        if uploaded_file2 is not None and uploaded_file3 is not None:
            detect_land_changes(uploaded_file2, uploaded_file3)

    elif option == "Animal Monitoring":
        st.title("Animal Monitoring")
        uploaded_file4 = st.file_uploader("Upload Image/Video", type=["jpg", "jpeg", "png", "mp4"])
        
        if uploaded_file4:
            if uploaded_file4.type.startswith("image"):
                file_bytes = np.asarray(bytearray(uploaded_file4.read()), dtype=np.uint8)
                image = cv2.imdecode(file_bytes, 1)
                
                if image is None:
                    st.error("Error loading image. Please upload a valid image file.")
                else:
                    results = yolo_model(image)
                    for result in results:
                        for box in result.boxes.xyxy:
                            x1, y1, x2, y2 = map(int, box[:4])
                            cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
                            
                    st.image(image, caption="Detected Animals", channels="BGR")
                    st.write(f"Estimated Count: {len(results[0].boxes)}")
            
            elif uploaded_file4.type.startswith("video"):
                tfile = tempfile.NamedTemporaryFile(delete=False)
                tfile.write(uploaded_file4.read())
                cap = cv2.VideoCapture(tfile.name)
                
                if not cap.isOpened():
                    st.error("Error loading video. Please upload a valid video file.")
                else:
                    stframe = st.empty()
                    st.write("Processing video...")
                    
                    while cap.isOpened():
                        ret, frame = cap.read()
                        if not ret:
                            break
                        
                        frame = cv2.resize(frame, (640, 480))
                        results = yolo_model(frame)
                        
                        for result in results:
                            for box in result.boxes.xyxy:
                                x1, y1, x2, y2 = map(int, box[:4])
                                cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
                        
                        stframe.image(frame, channels="BGR")
                        time.sleep(0.03)
                    
                    cap.release()

    elif option == "Threat Detection":
        st.title("Threat Detection and Prevention")
        st.sidebar.header("Choose Threat Detection")
        detection_option = st.sidebar.selectbox(
            "Select an option", 
            ["Poaching Alerts"]
        )
        
        if detection_option in ["Poaching Alerts"]:
            uploaded_file7 = st.file_uploader("Upload Image", type=['jpg', 'jpeg', 'png'])

            if uploaded_file7:
                image = Image.open(uploaded_file7)
                st.image(image, caption="Uploaded Image", use_column_width=True)
                
                if detection_option == "Poaching Alerts":
                    st.subheader("🎯 Poaching Activity Detection")
                    
                    with st.spinner("Analyzing image for potential poaching activities..."):
                        results = yolo_model(image)
                        
                        poaching_objects = ['person', 'gun', 'knife', 'truck', 'car']
                        detections = {}
                        
                        for result in results:
                            for box in result.boxes:
                                cls = int(box.cls[0])
                                conf = float(box.conf[0])
                                label = result.names[cls]
                                
                                if label in poaching_objects and conf > 0.3:
                                    detections[label] = conf
                        
                        if detections:
                            for obj, conf in detections.items():
                                st.progress(conf)
                                st.write(f"{obj.title()}: {conf*100:.1f}% confidence")
                            
                            annotated_img = np.array(image)
                            for result in results:
                                for box in result.boxes:
                                    x1, y1, x2, y2 = map(int, box.xyxy[0])
                                    cv2.rectangle(annotated_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
                            
                            st.image(annotated_img, caption="Detected Objects", use_column_width=True)
                            
                            if any(conf > 0.7 for conf in detections.values()):
                                st.error("⚠️ High-risk poaching activity detected! Alert sent to authorities.")
                        else:
                            st.success("No suspicious activities detected.")

if __name__ == "__main__":
    main()