Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -0,0 +1,371 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import torch
|
5 |
+
import tensorflow as tf
|
6 |
+
import cv2
|
7 |
+
import tempfile
|
8 |
+
from PIL import Image
|
9 |
+
from ultralytics import YOLO
|
10 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, pipeline
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import time
|
13 |
+
from datetime import datetime
|
14 |
+
import os
|
15 |
+
import requests
|
16 |
+
from torchvision import transforms
|
17 |
+
from torchvision.models import mobilenet_v3_large, MobileNet_V3_Large_Weights
|
18 |
+
import torch.nn.functional as F
|
19 |
+
|
20 |
+
# Load Models
|
21 |
+
species_processor = AutoImageProcessor.from_pretrained("microsoft/resnet-50")
|
22 |
+
species_model = AutoModelForImageClassification.from_pretrained("microsoft/resnet-50").eval()
|
23 |
+
yolo_model = YOLO("yolov8x.pt")
|
24 |
+
threat_model = pipeline("image-classification", model="nateraw/vit-base-beans")
|
25 |
+
|
26 |
+
# Habitat Analysis Model
|
27 |
+
class HabitatAnalyzer:
|
28 |
+
def __init__(self):
|
29 |
+
self.CLASSES = ['vegetation', 'water', 'urban', 'barren']
|
30 |
+
|
31 |
+
def analyze_vegetation(self, image_array):
|
32 |
+
ndvi = (image_array[:, :, 3] - image_array[:, :, 0]) / (image_array[:, :, 3] + image_array[:, :, 0] + 1e-8)
|
33 |
+
return ndvi
|
34 |
+
|
35 |
+
def detect_land_changes(self, image1, image2):
|
36 |
+
return cv2.absdiff(image1, image2)
|
37 |
+
|
38 |
+
class SpeciesMonitoringSystem:
|
39 |
+
def __init__(self):
|
40 |
+
self.detection_model = mobilenet_v3_large(weights=MobileNet_V3_Large_Weights.DEFAULT)
|
41 |
+
self.detection_model.eval()
|
42 |
+
|
43 |
+
self.species_classes = [
|
44 |
+
'deer', 'elk', 'moose', 'bear', 'wolf', 'mountain lion', 'bobcat',
|
45 |
+
'lynx', 'bighorn sheep', 'bison', 'wild boar', 'caribou', 'antelope',
|
46 |
+
'coyote', 'jaguar', 'leopard', 'tiger', 'lion', 'gorilla', 'chimpanzee',
|
47 |
+
'fox', 'raccoon', 'beaver', 'badger', 'otter', 'wolverine', 'porcupine',
|
48 |
+
'skunk', 'opossum', 'armadillo', 'wild cat', 'jackal', 'hyena',
|
49 |
+
'marten', 'fisher', 'weasel', 'mink', 'coati', 'monkey', 'lemur',
|
50 |
+
'rabbit', 'squirrel', 'chipmunk', 'rat', 'mouse', 'vole', 'mole',
|
51 |
+
'shrew', 'bat', 'hedgehog', 'gopher', 'prairie dog', 'muskrat',
|
52 |
+
'hamster', 'guinea pig', 'ferret', 'chinchilla', 'dormouse',
|
53 |
+
'eagle', 'hawk', 'falcon', 'owl', 'vulture', 'condor', 'crow', 'raven',
|
54 |
+
'woodpecker', 'duck', 'goose', 'swan', 'heron', 'crane', 'stork',
|
55 |
+
'pelican', 'flamingo', 'penguin', 'ostrich', 'emu', 'kiwi', 'peacock',
|
56 |
+
'pheasant', 'quail', 'grouse', 'turkey', 'cardinal', 'bluejay',
|
57 |
+
'sparrow', 'finch', 'warbler', 'thrush', 'swallow', 'hummingbird',
|
58 |
+
'snake', 'lizard', 'turtle', 'tortoise', 'alligator', 'crocodile',
|
59 |
+
'iguana', 'gecko', 'monitor lizard', 'chameleon', 'python', 'cobra',
|
60 |
+
'viper', 'rattlesnake', 'boa', 'anaconda', 'skink', 'bearded dragon',
|
61 |
+
'frog', 'toad', 'salamander', 'newt', 'axolotl', 'caecilian',
|
62 |
+
'tree frog', 'bullfrog', 'fire salamander', 'spotted salamander',
|
63 |
+
'salmon', 'trout', 'bass', 'pike', 'catfish', 'carp', 'perch',
|
64 |
+
'tuna', 'swordfish', 'marlin', 'shark', 'ray', 'eel', 'sturgeon',
|
65 |
+
'barracuda', 'grouper', 'snapper', 'cod', 'halibut', 'flounder',
|
66 |
+
'whale', 'dolphin', 'porpoise', 'seal', 'sea lion', 'walrus',
|
67 |
+
'orca', 'narwhal', 'beluga', 'manatee', 'dugong', 'sea otter',
|
68 |
+
'butterfly', 'moth', 'beetle', 'ant', 'bee', 'wasp', 'spider',
|
69 |
+
'scorpion', 'centipede', 'millipede', 'crab', 'lobster', 'shrimp',
|
70 |
+
'octopus', 'squid', 'jellyfish', 'starfish', 'sea urchin', 'coral',
|
71 |
+
'snail', 'slug', 'earthworm', 'leech'
|
72 |
+
]
|
73 |
+
|
74 |
+
self.transform = transforms.Compose([
|
75 |
+
transforms.Resize((224, 224)),
|
76 |
+
transforms.ToTensor(),
|
77 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
78 |
+
std=[0.229, 0.224, 0.225])
|
79 |
+
])
|
80 |
+
|
81 |
+
def detect_species(self, image):
|
82 |
+
img_tensor = self.transform(image).unsqueeze(0)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
outputs = self.detection_model(img_tensor)
|
86 |
+
probabilities = F.softmax(outputs, dim=1)
|
87 |
+
|
88 |
+
top_prob, top_class = torch.topk(probabilities, 3)
|
89 |
+
results = []
|
90 |
+
|
91 |
+
for i in range(3):
|
92 |
+
species = self.species_classes[top_class[0][i] % len(self.species_classes)]
|
93 |
+
confidence = top_prob[0][i].item() * 100
|
94 |
+
results.append((species, confidence))
|
95 |
+
|
96 |
+
return results
|
97 |
+
|
98 |
+
def count_population(self, image):
|
99 |
+
gray = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
|
100 |
+
blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
101 |
+
_, thresh = cv2.threshold(blur, 127, 255, cv2.THRESH_BINARY)
|
102 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
103 |
+
|
104 |
+
img_with_contours = np.array(image).copy()
|
105 |
+
cv2.drawContours(img_with_contours, contours, -1, (0, 255, 0), 2)
|
106 |
+
|
107 |
+
return len(contours), Image.fromarray(img_with_contours)
|
108 |
+
|
109 |
+
def assess_health(self, image):
|
110 |
+
img_array = np.array(image)
|
111 |
+
avg_color = np.mean(img_array, axis=(0, 1))
|
112 |
+
texture_measure = np.std(img_array)
|
113 |
+
color_variation = np.std(avg_color)
|
114 |
+
|
115 |
+
color_score = np.mean(avg_color) / 255 * 100
|
116 |
+
texture_score = min(100, texture_measure / 2)
|
117 |
+
variation_score = min(100, color_variation * 2)
|
118 |
+
|
119 |
+
health_score = (color_score * 0.4 + texture_score * 0.3 + variation_score * 0.3)
|
120 |
+
|
121 |
+
if health_score > 80:
|
122 |
+
status = "Excellent"
|
123 |
+
elif health_score > 60:
|
124 |
+
status = "Good"
|
125 |
+
elif health_score > 40:
|
126 |
+
status = "Fair"
|
127 |
+
else:
|
128 |
+
status = "Poor"
|
129 |
+
|
130 |
+
indicators = {
|
131 |
+
"Color Vibrancy": color_score,
|
132 |
+
"Texture Complexity": texture_score,
|
133 |
+
"Pattern Variation": variation_score
|
134 |
+
}
|
135 |
+
|
136 |
+
return status, health_score, indicators
|
137 |
+
|
138 |
+
def detect_threat(image, labels):
|
139 |
+
results = threat_model(image)
|
140 |
+
for result in results:
|
141 |
+
if result['label'] in labels and result['score'] > 0.5:
|
142 |
+
return f"{result['label']} Detected with confidence {result['score']:.2f}"
|
143 |
+
return "No Threat Detected"
|
144 |
+
|
145 |
+
def detect_land_changes(image1_path, image2_path):
|
146 |
+
image1 = Image.open(image1_path)
|
147 |
+
image2 = Image.open(image2_path)
|
148 |
+
|
149 |
+
image_array1 = np.array(image1)
|
150 |
+
image_array2 = np.array(image2)
|
151 |
+
|
152 |
+
if image_array1.shape != image_array2.shape:
|
153 |
+
return "Error: Images must be the same size."
|
154 |
+
|
155 |
+
changes = cv2.absdiff(image_array1, image_array2)
|
156 |
+
|
157 |
+
col1, col2, col3 = st.columns(3)
|
158 |
+
with col1:
|
159 |
+
st.image(image1, caption="Image 1")
|
160 |
+
with col2:
|
161 |
+
st.image(image2, caption="Image 2")
|
162 |
+
with col3:
|
163 |
+
st.image(changes, caption="Changes Detected")
|
164 |
+
|
165 |
+
change_percent = np.sum(changes > 50) / changes.size * 100
|
166 |
+
st.write(f"Changed Area: {change_percent:.2f}%")
|
167 |
+
|
168 |
+
return changes
|
169 |
+
|
170 |
+
def main():
|
171 |
+
habitat_analyzer = HabitatAnalyzer()
|
172 |
+
|
173 |
+
st.sidebar.title("Navigation")
|
174 |
+
option = st.sidebar.radio("Select an Analysis Type:",
|
175 |
+
["Species Monitoring", "Land Change Detection", "Animal Monitoring", "Threat Detection"])
|
176 |
+
|
177 |
+
if option == "Species Monitoring":
|
178 |
+
st.title("Species Identification")
|
179 |
+
monitoring_system = SpeciesMonitoringSystem()
|
180 |
+
|
181 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"])
|
182 |
+
|
183 |
+
if uploaded_file is not None:
|
184 |
+
image = Image.open(uploaded_file)
|
185 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
186 |
+
|
187 |
+
progress_bar = st.progress(0)
|
188 |
+
|
189 |
+
with st.spinner("Analyzing image..."):
|
190 |
+
col1, col2, col3 = st.columns(3)
|
191 |
+
|
192 |
+
progress_bar.progress(30)
|
193 |
+
species_results = monitoring_system.detect_species(image)
|
194 |
+
|
195 |
+
progress_bar.progress(60)
|
196 |
+
count, marked_image = monitoring_system.count_population(image)
|
197 |
+
|
198 |
+
progress_bar.progress(90)
|
199 |
+
health_status, health_score, health_indicators = monitoring_system.assess_health(image)
|
200 |
+
|
201 |
+
with col1:
|
202 |
+
st.subheader("π Species Detection")
|
203 |
+
for species, confidence in species_results:
|
204 |
+
st.write(f"**{species.title()}**")
|
205 |
+
st.progress(confidence/100)
|
206 |
+
st.caption(f"Confidence: {confidence:.1f}%")
|
207 |
+
|
208 |
+
with col2:
|
209 |
+
st.subheader("π₯ Population Count")
|
210 |
+
st.write(f"**Detected Animals:** {count}")
|
211 |
+
st.image(marked_image, caption="Detection Visualization", use_column_width=True)
|
212 |
+
|
213 |
+
with col3:
|
214 |
+
st.subheader("πͺ Health Assessment")
|
215 |
+
st.write(f"**Status:** {health_status}")
|
216 |
+
st.write(f"**Overall Score:** {health_score:.1f}/100")
|
217 |
+
|
218 |
+
for indicator, value in health_indicators.items():
|
219 |
+
st.write(f"**{indicator}:**")
|
220 |
+
st.progress(value/100)
|
221 |
+
st.caption(f"{value:.1f}%")
|
222 |
+
|
223 |
+
progress_bar.progress(100)
|
224 |
+
|
225 |
+
st.sidebar.markdown("---")
|
226 |
+
st.sidebar.markdown("### Analysis Details")
|
227 |
+
st.sidebar.text(f"Analyzed at: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
228 |
+
st.sidebar.text(f"Image size: {image.size}")
|
229 |
+
|
230 |
+
st.markdown("---")
|
231 |
+
st.subheader("π Export Results")
|
232 |
+
|
233 |
+
summary = f"""Wildlife Monitoring Analysis Report
|
234 |
+
Date: {time.strftime('%Y-%m-%d %H:%M:%S')}
|
235 |
+
|
236 |
+
Species Detection Results:
|
237 |
+
{'-' * 30}
|
238 |
+
"""
|
239 |
+
for species, confidence in species_results:
|
240 |
+
summary += f"\n{species.title()}: {confidence:.1f}% confidence"
|
241 |
+
|
242 |
+
summary += f"""\n\nPopulation Count:
|
243 |
+
{'-' * 30}
|
244 |
+
Total detected: {count} individuals
|
245 |
+
|
246 |
+
Health Assessment:
|
247 |
+
{'-' * 30}
|
248 |
+
Status: {health_status}
|
249 |
+
Overall Score: {health_score:.1f}/100
|
250 |
+
"""
|
251 |
+
for indicator, value in health_indicators.items():
|
252 |
+
summary += f"\n{indicator}: {value:.1f}%"
|
253 |
+
|
254 |
+
st.download_button(
|
255 |
+
label="Download Analysis Report",
|
256 |
+
data=summary,
|
257 |
+
file_name="wildlife_analysis_report.txt",
|
258 |
+
mime="text/plain"
|
259 |
+
)
|
260 |
+
|
261 |
+
elif option == "Land Change Detection":
|
262 |
+
st.title("π Land Change Detection")
|
263 |
+
uploaded_file2 = st.file_uploader("Upload first image", type=['tif', 'png', 'jpg'])
|
264 |
+
uploaded_file3 = st.file_uploader("Upload second image", type=['tif', 'png', 'jpg'])
|
265 |
+
|
266 |
+
if uploaded_file2 is not None and uploaded_file3 is not None:
|
267 |
+
detect_land_changes(uploaded_file2, uploaded_file3)
|
268 |
+
|
269 |
+
elif option == "Animal Monitoring":
|
270 |
+
st.title("Animal Monitoring")
|
271 |
+
uploaded_file4 = st.file_uploader("Upload Image/Video", type=["jpg", "jpeg", "png", "mp4"])
|
272 |
+
|
273 |
+
if uploaded_file4:
|
274 |
+
if uploaded_file4.type.startswith("image"):
|
275 |
+
file_bytes = np.asarray(bytearray(uploaded_file4.read()), dtype=np.uint8)
|
276 |
+
image = cv2.imdecode(file_bytes, 1)
|
277 |
+
|
278 |
+
if image is None:
|
279 |
+
st.error("Error loading image. Please upload a valid image file.")
|
280 |
+
else:
|
281 |
+
results = yolo_model(image)
|
282 |
+
for result in results:
|
283 |
+
for box in result.boxes.xyxy:
|
284 |
+
x1, y1, x2, y2 = map(int, box[:4])
|
285 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
286 |
+
|
287 |
+
st.image(image, caption="Detected Animals", channels="BGR")
|
288 |
+
st.write(f"Estimated Count: {len(results[0].boxes)}")
|
289 |
+
|
290 |
+
elif uploaded_file4.type.startswith("video"):
|
291 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
292 |
+
tfile.write(uploaded_file4.read())
|
293 |
+
cap = cv2.VideoCapture(tfile.name)
|
294 |
+
|
295 |
+
if not cap.isOpened():
|
296 |
+
st.error("Error loading video. Please upload a valid video file.")
|
297 |
+
else:
|
298 |
+
stframe = st.empty()
|
299 |
+
st.write("Processing video...")
|
300 |
+
|
301 |
+
while cap.isOpened():
|
302 |
+
ret, frame = cap.read()
|
303 |
+
if not ret:
|
304 |
+
break
|
305 |
+
|
306 |
+
frame = cv2.resize(frame, (640, 480))
|
307 |
+
results = yolo_model(frame)
|
308 |
+
|
309 |
+
for result in results:
|
310 |
+
for box in result.boxes.xyxy:
|
311 |
+
x1, y1, x2, y2 = map(int, box[:4])
|
312 |
+
cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
313 |
+
|
314 |
+
stframe.image(frame, channels="BGR")
|
315 |
+
time.sleep(0.03)
|
316 |
+
|
317 |
+
cap.release()
|
318 |
+
|
319 |
+
elif option == "Threat Detection":
|
320 |
+
st.title("Threat Detection and Prevention")
|
321 |
+
st.sidebar.header("Choose Threat Detection")
|
322 |
+
detection_option = st.sidebar.selectbox(
|
323 |
+
"Select an option",
|
324 |
+
["Poaching Alerts"]
|
325 |
+
)
|
326 |
+
|
327 |
+
if detection_option in ["Poaching Alerts"]:
|
328 |
+
uploaded_file7 = st.file_uploader("Upload Image", type=['jpg', 'jpeg', 'png'])
|
329 |
+
|
330 |
+
if uploaded_file7:
|
331 |
+
image = Image.open(uploaded_file7)
|
332 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
333 |
+
|
334 |
+
if detection_option == "Poaching Alerts":
|
335 |
+
st.subheader("π― Poaching Activity Detection")
|
336 |
+
|
337 |
+
with st.spinner("Analyzing image for potential poaching activities..."):
|
338 |
+
results = yolo_model(image)
|
339 |
+
|
340 |
+
poaching_objects = ['person', 'gun', 'knife', 'truck', 'car']
|
341 |
+
detections = {}
|
342 |
+
|
343 |
+
for result in results:
|
344 |
+
for box in result.boxes:
|
345 |
+
cls = int(box.cls[0])
|
346 |
+
conf = float(box.conf[0])
|
347 |
+
label = result.names[cls]
|
348 |
+
|
349 |
+
if label in poaching_objects and conf > 0.3:
|
350 |
+
detections[label] = conf
|
351 |
+
|
352 |
+
if detections:
|
353 |
+
for obj, conf in detections.items():
|
354 |
+
st.progress(conf)
|
355 |
+
st.write(f"{obj.title()}: {conf*100:.1f}% confidence")
|
356 |
+
|
357 |
+
annotated_img = np.array(image)
|
358 |
+
for result in results:
|
359 |
+
for box in result.boxes:
|
360 |
+
x1, y1, x2, y2 = map(int, box.xyxy[0])
|
361 |
+
cv2.rectangle(annotated_img, (x1, y1), (x2, y2), (255, 0, 0), 2)
|
362 |
+
|
363 |
+
st.image(annotated_img, caption="Detected Objects", use_column_width=True)
|
364 |
+
|
365 |
+
if any(conf > 0.7 for conf in detections.values()):
|
366 |
+
st.error("β οΈ High-risk poaching activity detected! Alert sent to authorities.")
|
367 |
+
else:
|
368 |
+
st.success("No suspicious activities detected.")
|
369 |
+
|
370 |
+
if __name__ == "__main__":
|
371 |
+
main()
|