sdmrec-docker / app.py
Oleh Kuznetsov
feat(logs): Add rewrite print
ccc4906
import json
import os
import random
import signal
import sys
import urllib.parse
from datetime import datetime
from pathlib import Path
from typing import Optional
from uuid import uuid4
import gradio as gr
import numpy as np
import pandas as pd
# from dotenv import load_dotenv
from fastembed import SparseEmbedding, SparseTextEmbedding
from google import genai
from google.genai import types
from huggingface_hub import CommitScheduler
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client import models as qmodels
from sentence_transformers import CrossEncoder, SentenceTransformer
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
# load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
VLLM_MODEL_NAME = os.getenv("VLLM_MODEL_NAME")
VLLM_GPU_MEMORY_UTILIZATION = float(os.getenv("VLLM_GPU_MEMORY_UTILIZATION"))
VLLM_MAX_SEQ_LEN = int(os.getenv("VLLM_MAX_SEQ_LEN"))
VLLM_DTYPE = os.getenv("VLLM_DTYPE")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
DATA_PATH = Path(os.getenv("DATA_PATH"))
DB_PATH = DATA_PATH / "db"
FEEDBACK_REPO = os.getenv("FEEDBACK_REPO")
FEEDBACK_DIR = DATA_PATH / "feedback"
FEEDBACK_DIR.mkdir(parents=True, exist_ok=True)
FEEDBACK_FILE = FEEDBACK_DIR / f"votes_{uuid4()}.jsonl"
scheduler = CommitScheduler(
repo_id=FEEDBACK_REPO,
repo_type="dataset",
folder_path=FEEDBACK_DIR,
path_in_repo="data",
every=5,
token=HF_TOKEN,
private=True,
)
client = QdrantClient(path=str(DB_PATH))
collection_name = "knowledge_cards"
num_chunks_base = 500
alpha = 0.5
top_k = 5 # we only want top 5 genres
youtube_url_template = "{genre} music playlist"
# -------------------------------- HELPERS -------------------------------------
def load_text_resource(path: Path) -> str:
with path.open("r") as file:
resource = file.read()
return resource
def youtube_search_link_for_genre(genre: str) -> str:
base_url = "https://www.youtube.com/results"
params = {
"search_query": youtube_url_template.format(
genre=genre.replace("_", " ").lower()
)
}
return f"{base_url}?{urllib.parse.urlencode(params)}"
def generate_recommendation_string(ranking: dict[str, float]) -> str:
recommendation_string = "## Recommendations for You\n\n"
for idx, (genre, score) in enumerate(ranking.items(), start=1):
youtube_link = youtube_search_link_for_genre(genre=genre)
recommendation_string += (
f"{idx}. **{genre.replace('_', ' ').capitalize()}**; "
f"[YouTube link]({youtube_link})\n"
)
return recommendation_string
def graceful_shutdown(signum, frame):
print(f"{signum} received - flushing feedback …", flush=True)
scheduler.trigger().result()
sys.exit(0)
signal.signal(signal.SIGTERM, graceful_shutdown)
signal.signal(signal.SIGINT, graceful_shutdown)
# -------------------------------- Data Models -------------------------------
class StructuredQueryRewriteResponse(BaseModel):
general: str | None
subjective: str | None
purpose: str | None
technical: str | None
curiosity: str | None
class QueryRewrite(BaseModel):
rewrites: list[str] | None = None
structured: StructuredQueryRewriteResponse | None = None
class APIGenreRecommendation(BaseModel):
name: str = Field(description="Name of the music genre.")
score: float = Field(
description="Score you assign to the genre (from 0 to 1).", ge=0, le=1
)
class APIGenreRecommendationResponse(BaseModel):
genres: list[APIGenreRecommendation]
class RetrievalResult(BaseModel):
chunk: str
genre: str
score: float
class RerankingResult(BaseModel):
query: str
genre: str
chunk: str
score: float
class Recommendation(BaseModel):
name: str
rank: int
score: Optional[float] = None
class PipelineResult(BaseModel):
query: str
rewrite: Optional[QueryRewrite] = None
retrieval_result: Optional[list[RetrievalResult]] = None
reranking_result: Optional[list[RerankingResult]] = None
recommendations: Optional[dict[str, Recommendation]] = None
def to_ranking(self) -> dict[str, float]:
if not self.recommendations:
return {}
return {
genre: recommendation.score
for genre, recommendation in self.recommendations.items()
}
# -------------------------------- VLLM --------------------------------------
local_llm = LLM(
model=VLLM_MODEL_NAME,
max_model_len=VLLM_MAX_SEQ_LEN,
gpu_memory_utilization=VLLM_GPU_MEMORY_UTILIZATION,
hf_token=HF_TOKEN,
enforce_eager=True,
dtype=VLLM_DTYPE,
)
json_schema = StructuredQueryRewriteResponse.model_json_schema()
guided_decoding_params_json = GuidedDecodingParams(json=json_schema)
sampling_params_json = SamplingParams(
guided_decoding=guided_decoding_params_json,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.05,
max_tokens=1024,
)
vllm_system_prompt = (
"You are a search query optimization assistant built into"
" music genre search engine, helping users discover novel music genres."
)
vllm_prompt = load_text_resource(Path("./resources/prompt_vllm.md"))
# -------------------------------- GEMINI ------------------------------------
gemini_config = types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=APIGenreRecommendationResponse,
temperature=0.7,
max_output_tokens=1024,
system_instruction=(
"You are a helpful music genre recommendation assistant built into"
" music genre search engine, helping users discover novel music genres."
),
)
gemini_llm = genai.Client(
api_key=GEMINI_API_KEY,
http_options={"api_version": "v1alpha"},
)
gemini_prompt = load_text_resource(Path("./resources/prompt_api.md"))
# ---------------------------- EMBEDDING MODELS --------------------------------
dense_encoder = SentenceTransformer(
model_name_or_path="mixedbread-ai/mxbai-embed-large-v1",
device="cuda",
model_kwargs={"torch_dtype": VLLM_DTYPE},
)
sparse_encoder = SparseTextEmbedding(model_name="Qdrant/bm25", cuda=True)
reranker = CrossEncoder(
model_name_or_path="BAAI/bge-reranker-v2-m3",
max_length=1024,
device="cuda",
model_kwargs={"torch_dtype": VLLM_DTYPE},
)
reranker_batch_size = 128
# ---------------------------- RETRIEVAL ---------------------------------------
def run_query_rewrite(query: str) -> QueryRewrite:
prompt = vllm_prompt.format(query=query)
messages = [
{"role": "system", "content": vllm_system_prompt},
{"role": "user", "content": prompt},
]
outputs = local_llm.chat(
messages=messages,
sampling_params=sampling_params_json,
)
rewrite_json = json.loads(outputs[0].outputs[0].text)
rewrite = QueryRewrite(
rewrites=[x for x in list(rewrite_json.values()) if x is not None],
structured=rewrite_json,
)
return rewrite
def prepare_queries_for_retrieval(
query: str, rewrite: QueryRewrite
) -> list[dict[str, str | None]]:
queries_to_retrieve = [{"text": query, "topic": None}]
for cat, rewrite in rewrite.structured.model_dump().items():
if rewrite is None:
continue
topic = cat
if cat not in ["subjective", "purpose", "technical"]:
topic = None
queries_to_retrieve.append({"text": rewrite, "topic": topic})
return queries_to_retrieve
def run_retrieval(
queries: list[dict[str, str]],
) -> RetrievalResult:
queries_to_embed = [query["text"] for query in queries]
dense_queries = list(
dense_encoder.encode(
queries_to_embed, convert_to_numpy=True, normalize_embeddings=True
)
)
sparse_queries = list(sparse_encoder.query_embed(queries_to_embed))
prefetches: list[qmodels.Prefetch] = []
for query, dense_query, sparse_query in zip(queries, dense_queries, sparse_queries):
assert dense_query is not None and sparse_query is not None
assert isinstance(dense_query, np.ndarray) and isinstance(
sparse_query, SparseEmbedding
)
topic = query.get("topic", None)
prefetch = [
qmodels.Prefetch(
query=dense_query,
using="dense",
filter=qmodels.Filter(
must=[
qmodels.FieldCondition(
key="topic", match=qmodels.MatchValue(value=topic)
)
]
)
if topic is not None
else None,
limit=num_chunks_base,
),
qmodels.Prefetch(
query=qmodels.SparseVector(**sparse_query.as_object()),
using="sparse",
filter=qmodels.Filter(
must=[
qmodels.FieldCondition(
key="topic", match=qmodels.MatchValue(value=topic)
)
]
)
if topic is not None
else None,
limit=num_chunks_base,
),
]
prefetches.extend(prefetch)
retrieval_results = client.query_points(
collection_name=collection_name,
prefetch=prefetches,
query=qmodels.FusionQuery(fusion=qmodels.Fusion.RRF),
limit=num_chunks_base,
)
final_hits: list[RetrievalResult] = [
RetrievalResult(
chunk=hit.payload["text"], genre=hit.payload["genre"], score=hit.score
)
for hit in retrieval_results.points
]
return final_hits
def run_reranking(
query: str, retrieval_result: list[RetrievalResult]
) -> list[RerankingResult]:
hit_texts: list[str] = [result.chunk for result in retrieval_result]
hit_genres: list[str] = [result.genre for result in retrieval_result]
hit_rerank = reranker.rank(
query=query,
documents=hit_texts,
batch_size=reranker_batch_size,
)
ranking = [
RerankingResult(
query=query,
genre=hit_genres[hit["corpus_id"]],
chunk=hit_texts[hit["corpus_id"]],
score=hit["score"],
)
for hit in hit_rerank
]
ranking.sort(key=lambda x: x.score, reverse=True)
return ranking
def get_top_genres(
df: pd.DataFrame,
column: str,
alpha: float = 1.0,
# beta: float = 1.0,
top_k: int | None = None,
) -> pd.Series:
assert 0 <= alpha <= 1.0
# Min-max normalization of re-ranker scores before aggregation
task_scores = df[column]
min_score = task_scores.min()
max_score = task_scores.max()
if max_score > min_score: # Avoid division by zero
df.loc[:, column] = (task_scores - min_score) / (max_score - min_score)
tg_df = df.groupby("genre").agg(size=("chunk", "size"), score=(column, "sum"))
tg_df["weighted_score"] = alpha * (tg_df["size"] / tg_df["size"].max()) + (
1 - alpha
) * (tg_df["score"] / tg_df["score"].max())
tg = tg_df.sort_values("weighted_score", ascending=False)["weighted_score"]
if top_k:
tg = tg.head(top_k)
return tg
def get_recommendations(
reranking_result: list[RerankingResult],
) -> dict[str, Recommendation]:
ranking_df = pd.DataFrame([x.model_dump(mode="python") for x in reranking_result])
top_genres_series = get_top_genres(
df=ranking_df, column="score", alpha=alpha, top_k=top_k
)
recommendations = {
genre: Recommendation(name=genre, rank=rank, score=score)
for rank, (genre, score) in enumerate(
top_genres_series.to_dict().items(), start=1
)
}
return recommendations
# ----------------------- GENERATE RECOMMENDATIONS -----------------------------
def recommend_sadaimrec(query: str):
result = PipelineResult(query=query)
print("Running query processing...", flush=True)
result.rewrite = run_query_rewrite(query=query)
print(f"Rewrites:\n{result.rewrite.model_dump_json(indent=4)}")
queries_to_retrieve = prepare_queries_for_retrieval(
query=query, rewrite=result.rewrite
)
print("Running retrieval...", flush=True)
result.retrieval_result = run_retrieval(queries_to_retrieve)
print("Running re-ranking...", flush=True)
result.reranking_result = run_reranking(
query=query, retrieval_result=result.retrieval_result
)
print("Aggregating recommendations...", flush=True)
result.recommendations = get_recommendations(result.reranking_result)
recommendation_string = generate_recommendation_string(result.to_ranking())
return f"{recommendation_string}"
def recommend_gemini(query: str):
print("Generating recommendations using Gemini...", flush=True)
prompt = gemini_prompt.format(query=query)
response = gemini_llm.models.generate_content(
model="gemini-2.0-flash",
contents=prompt,
config=gemini_config,
)
parsed_content: APIGenreRecommendationResponse = response.parsed
parsed_content.genres.sort(key=lambda x: x.score, reverse=True)
ranking = {x.name.lower(): x.score for x in parsed_content.genres}
recommendation_string = generate_recommendation_string(ranking)
return f"{recommendation_string}"
# -------------------------------------- INTERFACE -----------------------------
pipelines = {
"sadaimrec": recommend_sadaimrec,
"gemini": recommend_gemini,
}
def generate_responses(query):
if not query.strip():
raise gr.Error("Please enter a query before submitting.")
# Randomize model order
pipeline_names = list(pipelines.keys())
random.shuffle(pipeline_names)
# Generate responses
resp1 = pipelines[pipeline_names[0]](query)
resp2 = pipelines[pipeline_names[1]](query)
# Return texts and hidden labels
return resp1, resp2, pipeline_names[0], pipeline_names[1]
# Callback to capture vote
def handle_vote(nickname, query, selected, label1, label2, resp1, resp2):
nick = nickname.strip() or uuid4().hex[:8]
winner_name, loser_name = (
(label1, label2) if selected == "Option 1 (left)" else (label2, label1)
)
winner_resp, loser_resp = (
(resp1, resp2) if selected == "Option 1 (left)" else (resp2, resp1)
)
print(
(
f"User voted:\nwinner = {winner_name}: {winner_resp};"
f" loser = {loser_name}: {loser_resp}"
),
flush=True,
)
# ---------- persist feedback locally ----------
entry = {
"ts": datetime.now().isoformat(timespec="seconds") + "Z",
"nickname": nick,
"query": query,
"winner": winner_name,
"loser": loser_name,
"winner_response": winner_resp,
"loser_response": loser_resp,
}
with FEEDBACK_FILE.open("a", encoding="utf-8") as f:
f.write(json.dumps(entry) + "\n")
return (
f"Thank you for your vote! Winner: {winner_name}. Restarting in 3 seconds...",
gr.update(active=True),
gr.update(value=nick),
)
def reset_ui():
return (
gr.update(value="", visible=False), # hide row
gr.update(value=""), # clear query
gr.update(visible=False), # hide radio
gr.update(visible=False), # hide vote button
gr.update(value="**Generating...**"), # clear Option 1 text
gr.update(value="**Generating...**"), # clear Option 2 text
gr.update(value=""), # clear Model Label 1 text
gr.update(value=""), # clear Model Label 2 text
gr.update(value=""), # clear result
gr.update(active=False),
)
app_description = load_text_resource(Path("./resources/description.md"))
app_instructions = load_text_resource(Path("./resources/instructions.md"))
with gr.Blocks(
title="sadai-mrec", theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg)
) as demo:
gr.Markdown(app_description)
with gr.Accordion("Detailed usage instructions", open=False):
gr.Markdown(app_instructions)
nickname = gr.Textbox(
label="Your nickname",
placeholder="Leave empty to generate a random nickname on first vote within session",
)
query = gr.Textbox(
label="Your Query",
placeholder="Calming, music for deep relaxation with echoing sounds and deep bass",
)
submit_btn = gr.Button("Submit")
# timer that resets ui after feedback is sent
reset_timer = gr.Timer(value=3.0, active=False)
# Hidden components to store model responses and names
with gr.Row(visible=False) as response_row:
response_1 = gr.Markdown(value="**Generating...**", label="Option 1")
response_2 = gr.Markdown(value="**Generating...**", label="Option 2")
model_label_1 = gr.Textbox(visible=False)
model_label_2 = gr.Textbox(visible=False)
# Feedback
vote = gr.Radio(
["Option 1 (left)", "Option 2 (right)"],
label="Select Best Response",
visible=False,
)
vote_btn = gr.Button("Vote", visible=False)
result = gr.Textbox(label="Console", interactive=False)
# On submit
submit_btn.click( # generate
fn=generate_responses,
inputs=[query],
outputs=[response_1, response_2, model_label_1, model_label_2],
show_progress="full",
)
submit_btn.click( # update ui
fn=lambda: (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=None,
outputs=[response_row, vote, vote_btn],
)
# Feedback handling
vote_btn.click(
fn=handle_vote,
inputs=[
nickname,
query,
vote,
model_label_1,
model_label_2,
response_1,
response_2,
],
outputs=[result, reset_timer, nickname],
)
reset_timer.tick(
fn=reset_ui,
inputs=None,
outputs=[
response_row,
query,
vote,
vote_btn,
response_1,
response_2,
model_label_1,
model_label_2,
result,
reset_timer,
],
trigger_mode="once",
)
if __name__ == "__main__":
demo.queue(max_size=10, default_concurrency_limit=1).launch(
server_name="0.0.0.0", server_port=7860
)