File size: 18,481 Bytes
6e1997a
9aa37ee
7058ffd
e7fa297
 
bdaca7e
e7fa297
f7972c6
bdaca7e
e7fa297
f7972c6
9aa37ee
bdaca7e
 
e7fa297
bdaca7e
6e1997a
 
e7fa297
bdaca7e
 
 
 
9aa37ee
 
 
e7fa297
9aa37ee
6e1997a
 
9aa37ee
 
 
07f77e4
9aa37ee
6e1997a
 
bdaca7e
 
 
e7fa297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdaca7e
 
 
 
 
 
 
 
 
f7972c6
bdaca7e
f7972c6
bdaca7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7fa297
bdaca7e
 
 
f7972c6
6e1997a
e7fa297
 
 
 
 
 
 
 
 
9aa37ee
 
 
 
 
 
 
 
6e1997a
9aa37ee
 
 
 
6e1997a
bdaca7e
 
 
 
 
 
 
6e1997a
bdaca7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e1997a
 
9aa37ee
 
 
 
 
 
 
07f77e4
9aa37ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdaca7e
7397d2d
6e1997a
 
 
 
 
 
bdaca7e
 
 
4825b08
6e1997a
 
 
 
 
bdaca7e
6e1997a
bdaca7e
 
 
 
 
 
 
 
 
 
 
 
 
 
6e1997a
7397d2d
bdaca7e
 
f7972c6
9aa37ee
 
 
 
 
 
 
 
 
 
 
 
 
bdaca7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ccc4906
bdaca7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7397d2d
 
6e1997a
bdaca7e
6e1997a
 
 
 
 
 
 
bdaca7e
 
 
 
7058ffd
 
bdaca7e
7058ffd
 
e7fa297
7058ffd
 
 
 
e7fa297
 
7058ffd
 
 
 
 
 
 
 
 
 
 
 
 
e7fa297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7058ffd
e7fa297
7058ffd
e7fa297
7058ffd
 
 
 
 
 
 
 
 
bdaca7e
 
e7fa297
 
7058ffd
 
 
 
 
bdaca7e
4825b08
 
 
 
bdaca7e
4825b08
 
e7fa297
 
 
 
bdaca7e
 
 
 
7058ffd
 
e7fa297
7058ffd
 
 
bdaca7e
 
7058ffd
 
 
 
 
bdaca7e
 
 
7058ffd
 
 
 
 
 
 
 
 
bdaca7e
7058ffd
 
 
 
 
 
 
 
 
 
 
 
 
 
e7fa297
 
 
 
 
 
 
 
 
 
7058ffd
 
 
 
 
 
 
 
 
 
 
e7fa297
 
7058ffd
 
 
 
 
7397d2d
bdaca7e
7397d2d
6e1997a
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import json
import os
import random
import signal
import sys
import urllib.parse
from datetime import datetime
from pathlib import Path
from typing import Optional
from uuid import uuid4

import gradio as gr
import numpy as np
import pandas as pd
# from dotenv import load_dotenv
from fastembed import SparseEmbedding, SparseTextEmbedding
from google import genai
from google.genai import types
from huggingface_hub import CommitScheduler
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client import models as qmodels
from sentence_transformers import CrossEncoder, SentenceTransformer
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams

# load_dotenv()

HF_TOKEN = os.getenv("HF_TOKEN")

VLLM_MODEL_NAME = os.getenv("VLLM_MODEL_NAME")
VLLM_GPU_MEMORY_UTILIZATION = float(os.getenv("VLLM_GPU_MEMORY_UTILIZATION"))
VLLM_MAX_SEQ_LEN = int(os.getenv("VLLM_MAX_SEQ_LEN"))
VLLM_DTYPE = os.getenv("VLLM_DTYPE")

GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")

DATA_PATH = Path(os.getenv("DATA_PATH"))
DB_PATH = DATA_PATH / "db"

FEEDBACK_REPO = os.getenv("FEEDBACK_REPO")
FEEDBACK_DIR  = DATA_PATH / "feedback"
FEEDBACK_DIR.mkdir(parents=True, exist_ok=True)
FEEDBACK_FILE = FEEDBACK_DIR / f"votes_{uuid4()}.jsonl"

scheduler = CommitScheduler(
    repo_id=FEEDBACK_REPO,
    repo_type="dataset",
    folder_path=FEEDBACK_DIR,
    path_in_repo="data",
    every=5,
    token=HF_TOKEN,
    private=True,
)

client = QdrantClient(path=str(DB_PATH))
collection_name = "knowledge_cards"
num_chunks_base = 500
alpha = 0.5
top_k = 5  # we only want top 5 genres

youtube_url_template = "{genre} music playlist"


# -------------------------------- HELPERS -------------------------------------
def load_text_resource(path: Path) -> str:
    with path.open("r") as file:
        resource = file.read()
    return resource


def youtube_search_link_for_genre(genre: str) -> str:
    base_url = "https://www.youtube.com/results"
    params = {
        "search_query": youtube_url_template.format(
            genre=genre.replace("_", " ").lower()
        )
    }
    return f"{base_url}?{urllib.parse.urlencode(params)}"


def generate_recommendation_string(ranking: dict[str, float]) -> str:
    recommendation_string = "## Recommendations for You\n\n"
    for idx, (genre, score) in enumerate(ranking.items(), start=1):
        youtube_link = youtube_search_link_for_genre(genre=genre)
        recommendation_string += (
            f"{idx}. **{genre.replace('_', ' ').capitalize()}**; "
            f"[YouTube link]({youtube_link})\n"
        )
    return recommendation_string


def graceful_shutdown(signum, frame):
    print(f"{signum} received - flushing feedback …", flush=True)
    scheduler.trigger().result()
    sys.exit(0)


signal.signal(signal.SIGTERM, graceful_shutdown)
signal.signal(signal.SIGINT, graceful_shutdown)

# --------------------------------  Data Models  -------------------------------
class StructuredQueryRewriteResponse(BaseModel):
    general: str | None
    subjective: str | None
    purpose: str | None
    technical: str | None
    curiosity: str | None


class QueryRewrite(BaseModel):
    rewrites: list[str] | None = None
    structured: StructuredQueryRewriteResponse | None = None


class APIGenreRecommendation(BaseModel):
    name: str = Field(description="Name of the music genre.")
    score: float = Field(
        description="Score you assign to the genre (from 0 to 1).", ge=0, le=1
    )


class APIGenreRecommendationResponse(BaseModel):
    genres: list[APIGenreRecommendation]


class RetrievalResult(BaseModel):
    chunk: str
    genre: str
    score: float


class RerankingResult(BaseModel):
    query: str
    genre: str
    chunk: str
    score: float


class Recommendation(BaseModel):
    name: str
    rank: int
    score: Optional[float] = None


class PipelineResult(BaseModel):
    query: str
    rewrite: Optional[QueryRewrite] = None
    retrieval_result: Optional[list[RetrievalResult]] = None
    reranking_result: Optional[list[RerankingResult]] = None
    recommendations: Optional[dict[str, Recommendation]] = None

    def to_ranking(self) -> dict[str, float]:
        if not self.recommendations:
            return {}

        return {
            genre: recommendation.score
            for genre, recommendation in self.recommendations.items()
        }


# --------------------------------  VLLM  --------------------------------------
local_llm = LLM(
    model=VLLM_MODEL_NAME,
    max_model_len=VLLM_MAX_SEQ_LEN,
    gpu_memory_utilization=VLLM_GPU_MEMORY_UTILIZATION,
    hf_token=HF_TOKEN,
    enforce_eager=True,
    dtype=VLLM_DTYPE,
)

json_schema = StructuredQueryRewriteResponse.model_json_schema()
guided_decoding_params_json = GuidedDecodingParams(json=json_schema)
sampling_params_json = SamplingParams(
    guided_decoding=guided_decoding_params_json,
    temperature=0.7,
    top_p=0.8,
    repetition_penalty=1.05,
    max_tokens=1024,
)
vllm_system_prompt = (
    "You are a search query optimization assistant built into"
    " music genre search engine, helping users discover novel music genres."
)
vllm_prompt = load_text_resource(Path("./resources/prompt_vllm.md"))

# --------------------------------  GEMINI  ------------------------------------
gemini_config = types.GenerateContentConfig(
    response_mime_type="application/json",
    response_schema=APIGenreRecommendationResponse,
    temperature=0.7,
    max_output_tokens=1024,
    system_instruction=(
        "You are a helpful music genre recommendation assistant built into"
        " music genre search engine, helping users discover novel music genres."
    ),
)
gemini_llm = genai.Client(
    api_key=GEMINI_API_KEY,
    http_options={"api_version": "v1alpha"},
)
gemini_prompt = load_text_resource(Path("./resources/prompt_api.md"))

# ---------------------------- EMBEDDING MODELS --------------------------------
dense_encoder = SentenceTransformer(
    model_name_or_path="mixedbread-ai/mxbai-embed-large-v1",
    device="cuda",
    model_kwargs={"torch_dtype": VLLM_DTYPE},
)
sparse_encoder = SparseTextEmbedding(model_name="Qdrant/bm25", cuda=True)
reranker = CrossEncoder(
    model_name_or_path="BAAI/bge-reranker-v2-m3",
    max_length=1024,
    device="cuda",
    model_kwargs={"torch_dtype": VLLM_DTYPE},
)
reranker_batch_size = 128


# ---------------------------- RETRIEVAL ---------------------------------------
def run_query_rewrite(query: str) -> QueryRewrite:
    prompt = vllm_prompt.format(query=query)
    messages = [
        {"role": "system", "content": vllm_system_prompt},
        {"role": "user", "content": prompt},
    ]
    outputs = local_llm.chat(
        messages=messages,
        sampling_params=sampling_params_json,
    )
    rewrite_json = json.loads(outputs[0].outputs[0].text)
    rewrite = QueryRewrite(
        rewrites=[x for x in list(rewrite_json.values()) if x is not None],
        structured=rewrite_json,
    )
    return rewrite


def prepare_queries_for_retrieval(
    query: str, rewrite: QueryRewrite
) -> list[dict[str, str | None]]:
    queries_to_retrieve = [{"text": query, "topic": None}]
    for cat, rewrite in rewrite.structured.model_dump().items():
        if rewrite is None:
            continue
        topic = cat
        if cat not in ["subjective", "purpose", "technical"]:
            topic = None
        queries_to_retrieve.append({"text": rewrite, "topic": topic})
    return queries_to_retrieve


def run_retrieval(
    queries: list[dict[str, str]],
) -> RetrievalResult:
    queries_to_embed = [query["text"] for query in queries]
    dense_queries = list(
        dense_encoder.encode(
            queries_to_embed, convert_to_numpy=True, normalize_embeddings=True
        )
    )
    sparse_queries = list(sparse_encoder.query_embed(queries_to_embed))
    prefetches: list[qmodels.Prefetch] = []

    for query, dense_query, sparse_query in zip(queries, dense_queries, sparse_queries):
        assert dense_query is not None and sparse_query is not None
        assert isinstance(dense_query, np.ndarray) and isinstance(
            sparse_query, SparseEmbedding
        )
        topic = query.get("topic", None)
        prefetch = [
            qmodels.Prefetch(
                query=dense_query,
                using="dense",
                filter=qmodels.Filter(
                    must=[
                        qmodels.FieldCondition(
                            key="topic", match=qmodels.MatchValue(value=topic)
                        )
                    ]
                )
                if topic is not None
                else None,
                limit=num_chunks_base,
            ),
            qmodels.Prefetch(
                query=qmodels.SparseVector(**sparse_query.as_object()),
                using="sparse",
                filter=qmodels.Filter(
                    must=[
                        qmodels.FieldCondition(
                            key="topic", match=qmodels.MatchValue(value=topic)
                        )
                    ]
                )
                if topic is not None
                else None,
                limit=num_chunks_base,
            ),
        ]
        prefetches.extend(prefetch)

    retrieval_results = client.query_points(
        collection_name=collection_name,
        prefetch=prefetches,
        query=qmodels.FusionQuery(fusion=qmodels.Fusion.RRF),
        limit=num_chunks_base,
    )

    final_hits: list[RetrievalResult] = [
        RetrievalResult(
            chunk=hit.payload["text"], genre=hit.payload["genre"], score=hit.score
        )
        for hit in retrieval_results.points
    ]
    return final_hits


def run_reranking(
    query: str, retrieval_result: list[RetrievalResult]
) -> list[RerankingResult]:
    hit_texts: list[str] = [result.chunk for result in retrieval_result]
    hit_genres: list[str] = [result.genre for result in retrieval_result]
    hit_rerank = reranker.rank(
        query=query,
        documents=hit_texts,
        batch_size=reranker_batch_size,
    )
    ranking = [
        RerankingResult(
            query=query,
            genre=hit_genres[hit["corpus_id"]],
            chunk=hit_texts[hit["corpus_id"]],
            score=hit["score"],
        )
        for hit in hit_rerank
    ]
    ranking.sort(key=lambda x: x.score, reverse=True)
    return ranking


def get_top_genres(
    df: pd.DataFrame,
    column: str,
    alpha: float = 1.0,
    # beta: float = 1.0,
    top_k: int | None = None,
) -> pd.Series:
    assert 0 <= alpha <= 1.0

    # Min-max normalization of re-ranker scores before aggregation
    task_scores = df[column]
    min_score = task_scores.min()
    max_score = task_scores.max()
    if max_score > min_score:  # Avoid division by zero
        df.loc[:, column] = (task_scores - min_score) / (max_score - min_score)

    tg_df = df.groupby("genre").agg(size=("chunk", "size"), score=(column, "sum"))
    tg_df["weighted_score"] = alpha * (tg_df["size"] / tg_df["size"].max()) + (
        1 - alpha
    ) * (tg_df["score"] / tg_df["score"].max())
    tg = tg_df.sort_values("weighted_score", ascending=False)["weighted_score"]

    if top_k:
        tg = tg.head(top_k)

    return tg


def get_recommendations(
    reranking_result: list[RerankingResult],
) -> dict[str, Recommendation]:
    ranking_df = pd.DataFrame([x.model_dump(mode="python") for x in reranking_result])
    top_genres_series = get_top_genres(
        df=ranking_df, column="score", alpha=alpha, top_k=top_k
    )
    recommendations = {
        genre: Recommendation(name=genre, rank=rank, score=score)
        for rank, (genre, score) in enumerate(
            top_genres_series.to_dict().items(), start=1
        )
    }
    return recommendations


# ----------------------- GENERATE RECOMMENDATIONS -----------------------------
def recommend_sadaimrec(query: str):
    result = PipelineResult(query=query)
    print("Running query processing...", flush=True)
    result.rewrite = run_query_rewrite(query=query)
    print(f"Rewrites:\n{result.rewrite.model_dump_json(indent=4)}")
    queries_to_retrieve = prepare_queries_for_retrieval(
        query=query, rewrite=result.rewrite
    )

    print("Running retrieval...", flush=True)
    result.retrieval_result = run_retrieval(queries_to_retrieve)

    print("Running re-ranking...", flush=True)
    result.reranking_result = run_reranking(
        query=query, retrieval_result=result.retrieval_result
    )

    print("Aggregating recommendations...", flush=True)
    result.recommendations = get_recommendations(result.reranking_result)
    recommendation_string = generate_recommendation_string(result.to_ranking())
    return f"{recommendation_string}"


def recommend_gemini(query: str):
    print("Generating recommendations using Gemini...", flush=True)
    prompt = gemini_prompt.format(query=query)
    response = gemini_llm.models.generate_content(
        model="gemini-2.0-flash",
        contents=prompt,
        config=gemini_config,
    )
    parsed_content: APIGenreRecommendationResponse = response.parsed
    parsed_content.genres.sort(key=lambda x: x.score, reverse=True)
    ranking = {x.name.lower(): x.score for x in parsed_content.genres}
    recommendation_string = generate_recommendation_string(ranking)
    return f"{recommendation_string}"


# -------------------------------------- INTERFACE -----------------------------
pipelines = {
    "sadaimrec": recommend_sadaimrec,
    "gemini": recommend_gemini,
}


def generate_responses(query):
    if not query.strip():
        raise gr.Error("Please enter a query before submitting.")
    # Randomize model order
    pipeline_names = list(pipelines.keys())
    random.shuffle(pipeline_names)

    # Generate responses
    resp1 = pipelines[pipeline_names[0]](query)
    resp2 = pipelines[pipeline_names[1]](query)

    # Return texts and hidden labels
    return resp1, resp2, pipeline_names[0], pipeline_names[1]


# Callback to capture vote
def handle_vote(nickname, query, selected, label1, label2, resp1, resp2):
    nick = nickname.strip() or uuid4().hex[:8]
    winner_name, loser_name = (
        (label1, label2) if selected == "Option 1 (left)" else (label2, label1)
    )
    winner_resp, loser_resp = (
        (resp1, resp2) if selected == "Option 1 (left)" else (resp2, resp1)
    )
    print(
        (
            f"User voted:\nwinner = {winner_name}: {winner_resp};"
            f" loser = {loser_name}: {loser_resp}"
        ),
        flush=True,
    )

    # ---------- persist feedback locally ----------
    entry = {
        "ts": datetime.now().isoformat(timespec="seconds") + "Z",
        "nickname": nick,
        "query": query,
        "winner": winner_name,
        "loser": loser_name,
        "winner_response": winner_resp,
        "loser_response": loser_resp,
    }
    with FEEDBACK_FILE.open("a", encoding="utf-8") as f:
        f.write(json.dumps(entry) + "\n")

    return (
        f"Thank you for your vote! Winner: {winner_name}. Restarting in 3 seconds...",
        gr.update(active=True),
        gr.update(value=nick),
    )


def reset_ui():
    return (
        gr.update(value="", visible=False),  # hide row
        gr.update(value=""),  # clear query
        gr.update(visible=False),  # hide radio
        gr.update(visible=False),  # hide vote button
        gr.update(value="**Generating...**"),  # clear Option 1 text
        gr.update(value="**Generating...**"),  # clear Option 2 text
        gr.update(value=""),  # clear Model Label 1 text
        gr.update(value=""),  # clear Model Label 2 text
        gr.update(value=""),  # clear result
        gr.update(active=False),
    )


app_description = load_text_resource(Path("./resources/description.md"))
app_instructions = load_text_resource(Path("./resources/instructions.md"))
with gr.Blocks(
    title="sadai-mrec", theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg)
) as demo:
    gr.Markdown(app_description)
    with gr.Accordion("Detailed usage instructions", open=False):
        gr.Markdown(app_instructions)
    nickname = gr.Textbox(
        label="Your nickname",
        placeholder="Leave empty to generate a random nickname on first vote within session",
    )
    query = gr.Textbox(
        label="Your Query",
        placeholder="Calming, music for deep relaxation with echoing sounds and deep bass",
    )
    submit_btn = gr.Button("Submit")
    # timer that resets ui after feedback is sent
    reset_timer = gr.Timer(value=3.0, active=False)

    # Hidden components to store model responses and names
    with gr.Row(visible=False) as response_row:
        response_1 = gr.Markdown(value="**Generating...**", label="Option 1")
        response_2 = gr.Markdown(value="**Generating...**", label="Option 2")
    model_label_1 = gr.Textbox(visible=False)
    model_label_2 = gr.Textbox(visible=False)

    # Feedback
    vote = gr.Radio(
        ["Option 1 (left)", "Option 2 (right)"],
        label="Select Best Response",
        visible=False,
    )
    vote_btn = gr.Button("Vote", visible=False)
    result = gr.Textbox(label="Console", interactive=False)

    # On submit
    submit_btn.click(  # generate
        fn=generate_responses,
        inputs=[query],
        outputs=[response_1, response_2, model_label_1, model_label_2],
        show_progress="full",
    )
    submit_btn.click(  # update ui
        fn=lambda: (
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(visible=True),
        ),
        inputs=None,
        outputs=[response_row, vote, vote_btn],
    )

    # Feedback handling
    vote_btn.click(
        fn=handle_vote,
        inputs=[
            nickname,
            query,
            vote,
            model_label_1,
            model_label_2,
            response_1,
            response_2,
        ],
        outputs=[result, reset_timer, nickname],
    )
    reset_timer.tick(
        fn=reset_ui,
        inputs=None,
        outputs=[
            response_row,
            query,
            vote,
            vote_btn,
            response_1,
            response_2,
            model_label_1,
            model_label_2,
            result,
            reset_timer,
        ],
        trigger_mode="once",
    )


if __name__ == "__main__":
    demo.queue(max_size=10, default_concurrency_limit=1).launch(
        server_name="0.0.0.0", server_port=7860
    )