Spaces:
Paused
Paused
File size: 18,481 Bytes
6e1997a 9aa37ee 7058ffd e7fa297 bdaca7e e7fa297 f7972c6 bdaca7e e7fa297 f7972c6 9aa37ee bdaca7e e7fa297 bdaca7e 6e1997a e7fa297 bdaca7e 9aa37ee e7fa297 9aa37ee 6e1997a 9aa37ee 07f77e4 9aa37ee 6e1997a bdaca7e e7fa297 bdaca7e f7972c6 bdaca7e f7972c6 bdaca7e e7fa297 bdaca7e f7972c6 6e1997a e7fa297 9aa37ee 6e1997a 9aa37ee 6e1997a bdaca7e 6e1997a bdaca7e 6e1997a 9aa37ee 07f77e4 9aa37ee bdaca7e 7397d2d 6e1997a bdaca7e 4825b08 6e1997a bdaca7e 6e1997a bdaca7e 6e1997a 7397d2d bdaca7e f7972c6 9aa37ee bdaca7e ccc4906 bdaca7e 7397d2d 6e1997a bdaca7e 6e1997a bdaca7e 7058ffd bdaca7e 7058ffd e7fa297 7058ffd e7fa297 7058ffd e7fa297 7058ffd e7fa297 7058ffd e7fa297 7058ffd bdaca7e e7fa297 7058ffd bdaca7e 4825b08 bdaca7e 4825b08 e7fa297 bdaca7e 7058ffd e7fa297 7058ffd bdaca7e 7058ffd bdaca7e 7058ffd bdaca7e 7058ffd e7fa297 7058ffd e7fa297 7058ffd 7397d2d bdaca7e 7397d2d 6e1997a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 |
import json
import os
import random
import signal
import sys
import urllib.parse
from datetime import datetime
from pathlib import Path
from typing import Optional
from uuid import uuid4
import gradio as gr
import numpy as np
import pandas as pd
# from dotenv import load_dotenv
from fastembed import SparseEmbedding, SparseTextEmbedding
from google import genai
from google.genai import types
from huggingface_hub import CommitScheduler
from pydantic import BaseModel, Field
from qdrant_client import QdrantClient
from qdrant_client import models as qmodels
from sentence_transformers import CrossEncoder, SentenceTransformer
from vllm import LLM, SamplingParams
from vllm.sampling_params import GuidedDecodingParams
# load_dotenv()
HF_TOKEN = os.getenv("HF_TOKEN")
VLLM_MODEL_NAME = os.getenv("VLLM_MODEL_NAME")
VLLM_GPU_MEMORY_UTILIZATION = float(os.getenv("VLLM_GPU_MEMORY_UTILIZATION"))
VLLM_MAX_SEQ_LEN = int(os.getenv("VLLM_MAX_SEQ_LEN"))
VLLM_DTYPE = os.getenv("VLLM_DTYPE")
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
DATA_PATH = Path(os.getenv("DATA_PATH"))
DB_PATH = DATA_PATH / "db"
FEEDBACK_REPO = os.getenv("FEEDBACK_REPO")
FEEDBACK_DIR = DATA_PATH / "feedback"
FEEDBACK_DIR.mkdir(parents=True, exist_ok=True)
FEEDBACK_FILE = FEEDBACK_DIR / f"votes_{uuid4()}.jsonl"
scheduler = CommitScheduler(
repo_id=FEEDBACK_REPO,
repo_type="dataset",
folder_path=FEEDBACK_DIR,
path_in_repo="data",
every=5,
token=HF_TOKEN,
private=True,
)
client = QdrantClient(path=str(DB_PATH))
collection_name = "knowledge_cards"
num_chunks_base = 500
alpha = 0.5
top_k = 5 # we only want top 5 genres
youtube_url_template = "{genre} music playlist"
# -------------------------------- HELPERS -------------------------------------
def load_text_resource(path: Path) -> str:
with path.open("r") as file:
resource = file.read()
return resource
def youtube_search_link_for_genre(genre: str) -> str:
base_url = "https://www.youtube.com/results"
params = {
"search_query": youtube_url_template.format(
genre=genre.replace("_", " ").lower()
)
}
return f"{base_url}?{urllib.parse.urlencode(params)}"
def generate_recommendation_string(ranking: dict[str, float]) -> str:
recommendation_string = "## Recommendations for You\n\n"
for idx, (genre, score) in enumerate(ranking.items(), start=1):
youtube_link = youtube_search_link_for_genre(genre=genre)
recommendation_string += (
f"{idx}. **{genre.replace('_', ' ').capitalize()}**; "
f"[YouTube link]({youtube_link})\n"
)
return recommendation_string
def graceful_shutdown(signum, frame):
print(f"{signum} received - flushing feedback …", flush=True)
scheduler.trigger().result()
sys.exit(0)
signal.signal(signal.SIGTERM, graceful_shutdown)
signal.signal(signal.SIGINT, graceful_shutdown)
# -------------------------------- Data Models -------------------------------
class StructuredQueryRewriteResponse(BaseModel):
general: str | None
subjective: str | None
purpose: str | None
technical: str | None
curiosity: str | None
class QueryRewrite(BaseModel):
rewrites: list[str] | None = None
structured: StructuredQueryRewriteResponse | None = None
class APIGenreRecommendation(BaseModel):
name: str = Field(description="Name of the music genre.")
score: float = Field(
description="Score you assign to the genre (from 0 to 1).", ge=0, le=1
)
class APIGenreRecommendationResponse(BaseModel):
genres: list[APIGenreRecommendation]
class RetrievalResult(BaseModel):
chunk: str
genre: str
score: float
class RerankingResult(BaseModel):
query: str
genre: str
chunk: str
score: float
class Recommendation(BaseModel):
name: str
rank: int
score: Optional[float] = None
class PipelineResult(BaseModel):
query: str
rewrite: Optional[QueryRewrite] = None
retrieval_result: Optional[list[RetrievalResult]] = None
reranking_result: Optional[list[RerankingResult]] = None
recommendations: Optional[dict[str, Recommendation]] = None
def to_ranking(self) -> dict[str, float]:
if not self.recommendations:
return {}
return {
genre: recommendation.score
for genre, recommendation in self.recommendations.items()
}
# -------------------------------- VLLM --------------------------------------
local_llm = LLM(
model=VLLM_MODEL_NAME,
max_model_len=VLLM_MAX_SEQ_LEN,
gpu_memory_utilization=VLLM_GPU_MEMORY_UTILIZATION,
hf_token=HF_TOKEN,
enforce_eager=True,
dtype=VLLM_DTYPE,
)
json_schema = StructuredQueryRewriteResponse.model_json_schema()
guided_decoding_params_json = GuidedDecodingParams(json=json_schema)
sampling_params_json = SamplingParams(
guided_decoding=guided_decoding_params_json,
temperature=0.7,
top_p=0.8,
repetition_penalty=1.05,
max_tokens=1024,
)
vllm_system_prompt = (
"You are a search query optimization assistant built into"
" music genre search engine, helping users discover novel music genres."
)
vllm_prompt = load_text_resource(Path("./resources/prompt_vllm.md"))
# -------------------------------- GEMINI ------------------------------------
gemini_config = types.GenerateContentConfig(
response_mime_type="application/json",
response_schema=APIGenreRecommendationResponse,
temperature=0.7,
max_output_tokens=1024,
system_instruction=(
"You are a helpful music genre recommendation assistant built into"
" music genre search engine, helping users discover novel music genres."
),
)
gemini_llm = genai.Client(
api_key=GEMINI_API_KEY,
http_options={"api_version": "v1alpha"},
)
gemini_prompt = load_text_resource(Path("./resources/prompt_api.md"))
# ---------------------------- EMBEDDING MODELS --------------------------------
dense_encoder = SentenceTransformer(
model_name_or_path="mixedbread-ai/mxbai-embed-large-v1",
device="cuda",
model_kwargs={"torch_dtype": VLLM_DTYPE},
)
sparse_encoder = SparseTextEmbedding(model_name="Qdrant/bm25", cuda=True)
reranker = CrossEncoder(
model_name_or_path="BAAI/bge-reranker-v2-m3",
max_length=1024,
device="cuda",
model_kwargs={"torch_dtype": VLLM_DTYPE},
)
reranker_batch_size = 128
# ---------------------------- RETRIEVAL ---------------------------------------
def run_query_rewrite(query: str) -> QueryRewrite:
prompt = vllm_prompt.format(query=query)
messages = [
{"role": "system", "content": vllm_system_prompt},
{"role": "user", "content": prompt},
]
outputs = local_llm.chat(
messages=messages,
sampling_params=sampling_params_json,
)
rewrite_json = json.loads(outputs[0].outputs[0].text)
rewrite = QueryRewrite(
rewrites=[x for x in list(rewrite_json.values()) if x is not None],
structured=rewrite_json,
)
return rewrite
def prepare_queries_for_retrieval(
query: str, rewrite: QueryRewrite
) -> list[dict[str, str | None]]:
queries_to_retrieve = [{"text": query, "topic": None}]
for cat, rewrite in rewrite.structured.model_dump().items():
if rewrite is None:
continue
topic = cat
if cat not in ["subjective", "purpose", "technical"]:
topic = None
queries_to_retrieve.append({"text": rewrite, "topic": topic})
return queries_to_retrieve
def run_retrieval(
queries: list[dict[str, str]],
) -> RetrievalResult:
queries_to_embed = [query["text"] for query in queries]
dense_queries = list(
dense_encoder.encode(
queries_to_embed, convert_to_numpy=True, normalize_embeddings=True
)
)
sparse_queries = list(sparse_encoder.query_embed(queries_to_embed))
prefetches: list[qmodels.Prefetch] = []
for query, dense_query, sparse_query in zip(queries, dense_queries, sparse_queries):
assert dense_query is not None and sparse_query is not None
assert isinstance(dense_query, np.ndarray) and isinstance(
sparse_query, SparseEmbedding
)
topic = query.get("topic", None)
prefetch = [
qmodels.Prefetch(
query=dense_query,
using="dense",
filter=qmodels.Filter(
must=[
qmodels.FieldCondition(
key="topic", match=qmodels.MatchValue(value=topic)
)
]
)
if topic is not None
else None,
limit=num_chunks_base,
),
qmodels.Prefetch(
query=qmodels.SparseVector(**sparse_query.as_object()),
using="sparse",
filter=qmodels.Filter(
must=[
qmodels.FieldCondition(
key="topic", match=qmodels.MatchValue(value=topic)
)
]
)
if topic is not None
else None,
limit=num_chunks_base,
),
]
prefetches.extend(prefetch)
retrieval_results = client.query_points(
collection_name=collection_name,
prefetch=prefetches,
query=qmodels.FusionQuery(fusion=qmodels.Fusion.RRF),
limit=num_chunks_base,
)
final_hits: list[RetrievalResult] = [
RetrievalResult(
chunk=hit.payload["text"], genre=hit.payload["genre"], score=hit.score
)
for hit in retrieval_results.points
]
return final_hits
def run_reranking(
query: str, retrieval_result: list[RetrievalResult]
) -> list[RerankingResult]:
hit_texts: list[str] = [result.chunk for result in retrieval_result]
hit_genres: list[str] = [result.genre for result in retrieval_result]
hit_rerank = reranker.rank(
query=query,
documents=hit_texts,
batch_size=reranker_batch_size,
)
ranking = [
RerankingResult(
query=query,
genre=hit_genres[hit["corpus_id"]],
chunk=hit_texts[hit["corpus_id"]],
score=hit["score"],
)
for hit in hit_rerank
]
ranking.sort(key=lambda x: x.score, reverse=True)
return ranking
def get_top_genres(
df: pd.DataFrame,
column: str,
alpha: float = 1.0,
# beta: float = 1.0,
top_k: int | None = None,
) -> pd.Series:
assert 0 <= alpha <= 1.0
# Min-max normalization of re-ranker scores before aggregation
task_scores = df[column]
min_score = task_scores.min()
max_score = task_scores.max()
if max_score > min_score: # Avoid division by zero
df.loc[:, column] = (task_scores - min_score) / (max_score - min_score)
tg_df = df.groupby("genre").agg(size=("chunk", "size"), score=(column, "sum"))
tg_df["weighted_score"] = alpha * (tg_df["size"] / tg_df["size"].max()) + (
1 - alpha
) * (tg_df["score"] / tg_df["score"].max())
tg = tg_df.sort_values("weighted_score", ascending=False)["weighted_score"]
if top_k:
tg = tg.head(top_k)
return tg
def get_recommendations(
reranking_result: list[RerankingResult],
) -> dict[str, Recommendation]:
ranking_df = pd.DataFrame([x.model_dump(mode="python") for x in reranking_result])
top_genres_series = get_top_genres(
df=ranking_df, column="score", alpha=alpha, top_k=top_k
)
recommendations = {
genre: Recommendation(name=genre, rank=rank, score=score)
for rank, (genre, score) in enumerate(
top_genres_series.to_dict().items(), start=1
)
}
return recommendations
# ----------------------- GENERATE RECOMMENDATIONS -----------------------------
def recommend_sadaimrec(query: str):
result = PipelineResult(query=query)
print("Running query processing...", flush=True)
result.rewrite = run_query_rewrite(query=query)
print(f"Rewrites:\n{result.rewrite.model_dump_json(indent=4)}")
queries_to_retrieve = prepare_queries_for_retrieval(
query=query, rewrite=result.rewrite
)
print("Running retrieval...", flush=True)
result.retrieval_result = run_retrieval(queries_to_retrieve)
print("Running re-ranking...", flush=True)
result.reranking_result = run_reranking(
query=query, retrieval_result=result.retrieval_result
)
print("Aggregating recommendations...", flush=True)
result.recommendations = get_recommendations(result.reranking_result)
recommendation_string = generate_recommendation_string(result.to_ranking())
return f"{recommendation_string}"
def recommend_gemini(query: str):
print("Generating recommendations using Gemini...", flush=True)
prompt = gemini_prompt.format(query=query)
response = gemini_llm.models.generate_content(
model="gemini-2.0-flash",
contents=prompt,
config=gemini_config,
)
parsed_content: APIGenreRecommendationResponse = response.parsed
parsed_content.genres.sort(key=lambda x: x.score, reverse=True)
ranking = {x.name.lower(): x.score for x in parsed_content.genres}
recommendation_string = generate_recommendation_string(ranking)
return f"{recommendation_string}"
# -------------------------------------- INTERFACE -----------------------------
pipelines = {
"sadaimrec": recommend_sadaimrec,
"gemini": recommend_gemini,
}
def generate_responses(query):
if not query.strip():
raise gr.Error("Please enter a query before submitting.")
# Randomize model order
pipeline_names = list(pipelines.keys())
random.shuffle(pipeline_names)
# Generate responses
resp1 = pipelines[pipeline_names[0]](query)
resp2 = pipelines[pipeline_names[1]](query)
# Return texts and hidden labels
return resp1, resp2, pipeline_names[0], pipeline_names[1]
# Callback to capture vote
def handle_vote(nickname, query, selected, label1, label2, resp1, resp2):
nick = nickname.strip() or uuid4().hex[:8]
winner_name, loser_name = (
(label1, label2) if selected == "Option 1 (left)" else (label2, label1)
)
winner_resp, loser_resp = (
(resp1, resp2) if selected == "Option 1 (left)" else (resp2, resp1)
)
print(
(
f"User voted:\nwinner = {winner_name}: {winner_resp};"
f" loser = {loser_name}: {loser_resp}"
),
flush=True,
)
# ---------- persist feedback locally ----------
entry = {
"ts": datetime.now().isoformat(timespec="seconds") + "Z",
"nickname": nick,
"query": query,
"winner": winner_name,
"loser": loser_name,
"winner_response": winner_resp,
"loser_response": loser_resp,
}
with FEEDBACK_FILE.open("a", encoding="utf-8") as f:
f.write(json.dumps(entry) + "\n")
return (
f"Thank you for your vote! Winner: {winner_name}. Restarting in 3 seconds...",
gr.update(active=True),
gr.update(value=nick),
)
def reset_ui():
return (
gr.update(value="", visible=False), # hide row
gr.update(value=""), # clear query
gr.update(visible=False), # hide radio
gr.update(visible=False), # hide vote button
gr.update(value="**Generating...**"), # clear Option 1 text
gr.update(value="**Generating...**"), # clear Option 2 text
gr.update(value=""), # clear Model Label 1 text
gr.update(value=""), # clear Model Label 2 text
gr.update(value=""), # clear result
gr.update(active=False),
)
app_description = load_text_resource(Path("./resources/description.md"))
app_instructions = load_text_resource(Path("./resources/instructions.md"))
with gr.Blocks(
title="sadai-mrec", theme=gr.themes.Default(text_size=gr.themes.sizes.text_lg)
) as demo:
gr.Markdown(app_description)
with gr.Accordion("Detailed usage instructions", open=False):
gr.Markdown(app_instructions)
nickname = gr.Textbox(
label="Your nickname",
placeholder="Leave empty to generate a random nickname on first vote within session",
)
query = gr.Textbox(
label="Your Query",
placeholder="Calming, music for deep relaxation with echoing sounds and deep bass",
)
submit_btn = gr.Button("Submit")
# timer that resets ui after feedback is sent
reset_timer = gr.Timer(value=3.0, active=False)
# Hidden components to store model responses and names
with gr.Row(visible=False) as response_row:
response_1 = gr.Markdown(value="**Generating...**", label="Option 1")
response_2 = gr.Markdown(value="**Generating...**", label="Option 2")
model_label_1 = gr.Textbox(visible=False)
model_label_2 = gr.Textbox(visible=False)
# Feedback
vote = gr.Radio(
["Option 1 (left)", "Option 2 (right)"],
label="Select Best Response",
visible=False,
)
vote_btn = gr.Button("Vote", visible=False)
result = gr.Textbox(label="Console", interactive=False)
# On submit
submit_btn.click( # generate
fn=generate_responses,
inputs=[query],
outputs=[response_1, response_2, model_label_1, model_label_2],
show_progress="full",
)
submit_btn.click( # update ui
fn=lambda: (
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=True),
),
inputs=None,
outputs=[response_row, vote, vote_btn],
)
# Feedback handling
vote_btn.click(
fn=handle_vote,
inputs=[
nickname,
query,
vote,
model_label_1,
model_label_2,
response_1,
response_2,
],
outputs=[result, reset_timer, nickname],
)
reset_timer.tick(
fn=reset_ui,
inputs=None,
outputs=[
response_row,
query,
vote,
vote_btn,
response_1,
response_2,
model_label_1,
model_label_2,
result,
reset_timer,
],
trigger_mode="once",
)
if __name__ == "__main__":
demo.queue(max_size=10, default_concurrency_limit=1).launch(
server_name="0.0.0.0", server_port=7860
)
|