|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from abc import ABC, abstractmethod |
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from openai import Stream |
|
|
|
from camel.messages import OpenAIMessage |
|
from camel.types import ( |
|
ChatCompletion, |
|
ChatCompletionChunk, |
|
ModelType, |
|
UnifiedModelType, |
|
) |
|
from camel.utils import BaseTokenCounter |
|
|
|
|
|
class BaseModelBackend(ABC): |
|
r"""Base class for different model backends. |
|
It may be OpenAI API, a local LLM, a stub for unit tests, etc. |
|
|
|
Args: |
|
model_type (Union[ModelType, str]): Model for which a backend is |
|
created. |
|
model_config_dict (Optional[Dict[str, Any]], optional): A config |
|
dictionary. (default: :obj:`{}`) |
|
api_key (Optional[str], optional): The API key for authenticating |
|
with the model service. (default: :obj:`None`) |
|
url (Optional[str], optional): The url to the model service. |
|
(default: :obj:`None`) |
|
token_counter (Optional[BaseTokenCounter], optional): Token |
|
counter to use for the model. If not provided, |
|
:obj:`OpenAITokenCounter` will be used. (default: :obj:`None`) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model_type: Union[ModelType, str], |
|
model_config_dict: Optional[Dict[str, Any]] = None, |
|
api_key: Optional[str] = None, |
|
url: Optional[str] = None, |
|
token_counter: Optional[BaseTokenCounter] = None, |
|
) -> None: |
|
self.model_type: UnifiedModelType = UnifiedModelType(model_type) |
|
if model_config_dict is None: |
|
model_config_dict = {} |
|
self.model_config_dict = model_config_dict |
|
self._api_key = api_key |
|
self._url = url |
|
self._token_counter = token_counter |
|
self.check_model_config() |
|
|
|
@property |
|
@abstractmethod |
|
def token_counter(self) -> BaseTokenCounter: |
|
r"""Initialize the token counter for the model backend. |
|
|
|
Returns: |
|
BaseTokenCounter: The token counter following the model's |
|
tokenization style. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def run( |
|
self, |
|
messages: List[OpenAIMessage], |
|
) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: |
|
r"""Runs the query to the backend model. |
|
|
|
Args: |
|
messages (List[OpenAIMessage]): Message list with the chat history |
|
in OpenAI API format. |
|
|
|
Returns: |
|
Union[ChatCompletion, Stream[ChatCompletionChunk]]: |
|
`ChatCompletion` in the non-stream mode, or |
|
`Stream[ChatCompletionChunk]` in the stream mode. |
|
""" |
|
pass |
|
|
|
@abstractmethod |
|
def check_model_config(self): |
|
r"""Check whether the input model configuration contains unexpected |
|
arguments |
|
|
|
Raises: |
|
ValueError: If the model configuration dictionary contains any |
|
unexpected argument for this model class. |
|
""" |
|
pass |
|
|
|
def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: |
|
r"""Count the number of tokens in the messages using the specific |
|
tokenizer. |
|
|
|
Args: |
|
messages (List[Dict]): message list with the chat history |
|
in OpenAI API format. |
|
|
|
Returns: |
|
int: Number of tokens in the messages. |
|
""" |
|
return self.token_counter.count_tokens_from_messages(messages) |
|
|
|
@property |
|
def token_limit(self) -> int: |
|
r"""Returns the maximum token limit for a given model. |
|
|
|
This method retrieves the maximum token limit either from the |
|
`model_config_dict` or from the model's default token limit. |
|
|
|
Returns: |
|
int: The maximum token limit for the given model. |
|
""" |
|
return ( |
|
self.model_config_dict.get("max_tokens") |
|
or self.model_type.token_limit |
|
) |
|
|
|
@property |
|
def stream(self) -> bool: |
|
r"""Returns whether the model is in stream mode, which sends partial |
|
results each time. |
|
|
|
Returns: |
|
bool: Whether the model is in stream mode. |
|
""" |
|
return False |
|
|