# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. ========= from abc import ABC, abstractmethod from typing import Any, Dict, List, Optional, Union from openai import Stream from camel.messages import OpenAIMessage from camel.types import ( ChatCompletion, ChatCompletionChunk, ModelType, UnifiedModelType, ) from camel.utils import BaseTokenCounter class BaseModelBackend(ABC): r"""Base class for different model backends. It may be OpenAI API, a local LLM, a stub for unit tests, etc. Args: model_type (Union[ModelType, str]): Model for which a backend is created. model_config_dict (Optional[Dict[str, Any]], optional): A config dictionary. (default: :obj:`{}`) api_key (Optional[str], optional): The API key for authenticating with the model service. (default: :obj:`None`) url (Optional[str], optional): The url to the model service. (default: :obj:`None`) token_counter (Optional[BaseTokenCounter], optional): Token counter to use for the model. If not provided, :obj:`OpenAITokenCounter` will be used. (default: :obj:`None`) """ def __init__( self, model_type: Union[ModelType, str], model_config_dict: Optional[Dict[str, Any]] = None, api_key: Optional[str] = None, url: Optional[str] = None, token_counter: Optional[BaseTokenCounter] = None, ) -> None: self.model_type: UnifiedModelType = UnifiedModelType(model_type) if model_config_dict is None: model_config_dict = {} self.model_config_dict = model_config_dict self._api_key = api_key self._url = url self._token_counter = token_counter self.check_model_config() @property @abstractmethod def token_counter(self) -> BaseTokenCounter: r"""Initialize the token counter for the model backend. Returns: BaseTokenCounter: The token counter following the model's tokenization style. """ pass @abstractmethod def run( self, messages: List[OpenAIMessage], ) -> Union[ChatCompletion, Stream[ChatCompletionChunk]]: r"""Runs the query to the backend model. Args: messages (List[OpenAIMessage]): Message list with the chat history in OpenAI API format. Returns: Union[ChatCompletion, Stream[ChatCompletionChunk]]: `ChatCompletion` in the non-stream mode, or `Stream[ChatCompletionChunk]` in the stream mode. """ pass @abstractmethod def check_model_config(self): r"""Check whether the input model configuration contains unexpected arguments Raises: ValueError: If the model configuration dictionary contains any unexpected argument for this model class. """ pass def count_tokens_from_messages(self, messages: List[OpenAIMessage]) -> int: r"""Count the number of tokens in the messages using the specific tokenizer. Args: messages (List[Dict]): message list with the chat history in OpenAI API format. Returns: int: Number of tokens in the messages. """ return self.token_counter.count_tokens_from_messages(messages) @property def token_limit(self) -> int: r"""Returns the maximum token limit for a given model. This method retrieves the maximum token limit either from the `model_config_dict` or from the model's default token limit. Returns: int: The maximum token limit for the given model. """ return ( self.model_config_dict.get("max_tokens") or self.model_type.token_limit ) @property def stream(self) -> bool: r"""Returns whether the model is in stream mode, which sends partial results each time. Returns: bool: Whether the model is in stream mode. """ return False