|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from camel.agents.chat_agent import ChatAgent |
|
from camel.messages import BaseMessage |
|
from camel.models import BaseModelBackend |
|
from camel.prompts import PromptTemplateGenerator, TextPrompt |
|
from camel.types import RoleType, TaskType |
|
from camel.utils import get_task_list |
|
|
|
|
|
try: |
|
import os |
|
|
|
if os.getenv("AGENTOPS_API_KEY") is not None: |
|
from agentops import track_agent |
|
else: |
|
raise ImportError |
|
except (ImportError, AttributeError): |
|
from camel.utils import track_agent |
|
|
|
|
|
@track_agent(name="TaskSpecifyAgent") |
|
class TaskSpecifyAgent(ChatAgent): |
|
r"""An agent that specifies a given task prompt by prompting the user to |
|
provide more details. |
|
|
|
Attributes: |
|
DEFAULT_WORD_LIMIT (int): The default word limit for the task prompt. |
|
task_specify_prompt (TextPrompt): The prompt for specifying the task. |
|
|
|
Args: |
|
model (BaseModelBackend, optional): The model backend to use for |
|
generating responses. (default: :obj:`OpenAIModel` with |
|
`GPT_4O_MINI`) |
|
task_type (TaskType, optional): The type of task for which to generate |
|
a prompt. (default: :obj:`TaskType.AI_SOCIETY`) |
|
task_specify_prompt (Union[str, TextPrompt], optional): The prompt for |
|
specifying the task. (default: :obj:`None`) |
|
word_limit (int, optional): The word limit for the task prompt. |
|
(default: :obj:`50`) |
|
output_language (str, optional): The language to be output by the |
|
agent. (default: :obj:`None`) |
|
""" |
|
|
|
DEFAULT_WORD_LIMIT = 50 |
|
|
|
def __init__( |
|
self, |
|
model: Optional[BaseModelBackend] = None, |
|
task_type: TaskType = TaskType.AI_SOCIETY, |
|
task_specify_prompt: Optional[Union[str, TextPrompt]] = None, |
|
word_limit: int = DEFAULT_WORD_LIMIT, |
|
output_language: Optional[str] = None, |
|
) -> None: |
|
self.task_specify_prompt: Union[str, TextPrompt] |
|
if task_specify_prompt is None: |
|
task_specify_prompt_template = ( |
|
PromptTemplateGenerator().get_task_specify_prompt(task_type) |
|
) |
|
|
|
self.task_specify_prompt = task_specify_prompt_template.format( |
|
word_limit=word_limit |
|
) |
|
else: |
|
self.task_specify_prompt = TextPrompt(task_specify_prompt) |
|
|
|
system_message = BaseMessage( |
|
role_name="Task Specifier", |
|
role_type=RoleType.ASSISTANT, |
|
meta_dict=None, |
|
content="You can make a task more specific.", |
|
) |
|
|
|
super().__init__( |
|
system_message, |
|
model=model, |
|
output_language=output_language, |
|
) |
|
|
|
def run( |
|
self, |
|
task_prompt: Union[str, TextPrompt], |
|
meta_dict: Optional[Dict[str, Any]] = None, |
|
) -> TextPrompt: |
|
r"""Specify the given task prompt by providing more details. |
|
|
|
Args: |
|
task_prompt (Union[str, TextPrompt]): The original task |
|
prompt. |
|
meta_dict (Dict[str, Any], optional): A dictionary containing |
|
additional information to include in the prompt. |
|
(default: :obj:`None`) |
|
|
|
Returns: |
|
TextPrompt: The specified task prompt. |
|
""" |
|
self.reset() |
|
task_specify_prompt = self.task_specify_prompt.format(task=task_prompt) |
|
|
|
if meta_dict is not None: |
|
task_specify_prompt = task_specify_prompt.format(**meta_dict) |
|
task_msg = BaseMessage.make_user_message( |
|
role_name="Task Specifier", content=task_specify_prompt |
|
) |
|
specifier_response = self.step(task_msg) |
|
|
|
if specifier_response.terminated: |
|
raise RuntimeError("Task specification failed.") |
|
if len(specifier_response.msgs) == 0: |
|
raise RuntimeError("Got no specification message.") |
|
|
|
specified_task_msg = specifier_response.msgs[0] |
|
|
|
return TextPrompt(specified_task_msg.content) |
|
|
|
|
|
@track_agent(name="TaskPlannerAgent") |
|
class TaskPlannerAgent(ChatAgent): |
|
r"""An agent that helps divide a task into subtasks based on the input |
|
task prompt. |
|
|
|
Attributes: |
|
task_planner_prompt (TextPrompt): A prompt for the agent to divide |
|
the task into subtasks. |
|
|
|
Args: |
|
model (BaseModelBackend, optional): The model backend to use for |
|
generating responses. (default: :obj:`OpenAIModel` with |
|
`GPT_4O_MINI`) |
|
output_language (str, optional): The language to be output by the |
|
agent. (default: :obj:`None`) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: Optional[BaseModelBackend] = None, |
|
output_language: Optional[str] = None, |
|
) -> None: |
|
self.task_planner_prompt = TextPrompt( |
|
"Divide this task into subtasks: {task}. Be concise." |
|
) |
|
system_message = BaseMessage( |
|
role_name="Task Planner", |
|
role_type=RoleType.ASSISTANT, |
|
meta_dict=None, |
|
content="You are a helpful task planner.", |
|
) |
|
|
|
super().__init__( |
|
system_message, |
|
model=model, |
|
output_language=output_language, |
|
) |
|
|
|
def run( |
|
self, |
|
task_prompt: Union[str, TextPrompt], |
|
) -> TextPrompt: |
|
r"""Generate subtasks based on the input task prompt. |
|
|
|
Args: |
|
task_prompt (Union[str, TextPrompt]): The prompt for the task to |
|
be divided into subtasks. |
|
|
|
Returns: |
|
TextPrompt: A prompt for the subtasks generated by the agent. |
|
""" |
|
|
|
self.reset() |
|
task_planner_prompt = self.task_planner_prompt.format(task=task_prompt) |
|
|
|
task_msg = BaseMessage.make_user_message( |
|
role_name="Task Planner", content=task_planner_prompt |
|
) |
|
|
|
task_response = self.step(task_msg) |
|
|
|
if task_response.terminated: |
|
raise RuntimeError("Task planning failed.") |
|
if len(task_response.msgs) == 0: |
|
raise RuntimeError("Got no task planning message.") |
|
|
|
sub_tasks_msg = task_response.msgs[0] |
|
return TextPrompt(sub_tasks_msg.content) |
|
|
|
|
|
@track_agent(name="TaskCreationAgent") |
|
class TaskCreationAgent(ChatAgent): |
|
r"""An agent that helps create new tasks based on the objective |
|
and last completed task. Compared to :obj:`TaskPlannerAgent`, |
|
it's still a task planner, but it has more context information |
|
like last task and incomplete task list. Modified from |
|
`BabyAGI <https://github.com/yoheinakajima/babyagi>`_. |
|
|
|
Attributes: |
|
task_creation_prompt (TextPrompt): A prompt for the agent to |
|
create new tasks. |
|
|
|
Args: |
|
role_name (str): The role name of the Agent to create the task. |
|
objective (Union[str, TextPrompt]): The objective of the Agent to |
|
perform the task. |
|
model (BaseModelBackend, optional): The LLM backend to use for |
|
generating responses. (default: :obj:`OpenAIModel` with |
|
`GPT_4O_MINI`) |
|
output_language (str, optional): The language to be output by the |
|
agent. (default: :obj:`None`) |
|
message_window_size (int, optional): The maximum number of previous |
|
messages to include in the context window. If `None`, no windowing |
|
is performed. (default: :obj:`None`) |
|
max_task_num (int, optional): The maximum number of planned |
|
tasks in one round. (default: :obj:3) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
role_name: str, |
|
objective: Union[str, TextPrompt], |
|
model: Optional[BaseModelBackend] = None, |
|
output_language: Optional[str] = None, |
|
message_window_size: Optional[int] = None, |
|
max_task_num: Optional[int] = 3, |
|
) -> None: |
|
task_creation_prompt = TextPrompt( |
|
"""Create new a task with the following objective: {objective}. |
|
Never forget you are a Task Creator of {role_name}. |
|
You must instruct me based on my expertise and your needs to solve the task. |
|
You should consider past solved tasks and in-progress tasks: {task_list}. |
|
The new created tasks must not overlap with these past tasks. |
|
The result must be a numbered list in the format: |
|
|
|
#. First Task |
|
#. Second Task |
|
#. Third Task |
|
|
|
You can only give me up to {max_task_num} tasks at a time. \ |
|
Each task should be concise, concrete and doable for a {role_name}. |
|
You should make task plan and not ask me questions. |
|
If you think no new tasks are needed right now, write "No tasks to add." |
|
Now start to give me new tasks one by one. No more than three tasks. |
|
Be concrete. |
|
""" |
|
) |
|
|
|
self.task_creation_prompt = task_creation_prompt.format( |
|
objective=objective, role_name=role_name, max_task_num=max_task_num |
|
) |
|
self.objective = objective |
|
|
|
system_message = BaseMessage( |
|
role_name="Task Creator", |
|
role_type=RoleType.ASSISTANT, |
|
meta_dict=None, |
|
content="You are a helpful task creator.", |
|
) |
|
|
|
super().__init__( |
|
system_message, |
|
model=model, |
|
output_language=output_language, |
|
message_window_size=message_window_size, |
|
) |
|
|
|
def run( |
|
self, |
|
task_list: List[str], |
|
) -> List[str]: |
|
r"""Generate subtasks based on the previous task results and |
|
incomplete task list. |
|
|
|
Args: |
|
task_list (List[str]): The completed or in-progress |
|
tasks which should not overlap with new created tasks. |
|
|
|
Returns: |
|
List[str]: The new task list generated by the Agent. |
|
""" |
|
|
|
if len(task_list) > 0: |
|
task_creation_prompt = self.task_creation_prompt.format( |
|
task_list=task_list |
|
) |
|
else: |
|
task_creation_prompt = self.task_creation_prompt.format( |
|
task_list="" |
|
) |
|
|
|
task_msg = BaseMessage.make_user_message( |
|
role_name="Task Creator", content=task_creation_prompt |
|
) |
|
task_response = self.step(task_msg) |
|
|
|
if task_response.terminated: |
|
raise RuntimeError("Task creation failed.") |
|
if len(task_response.msgs) == 0: |
|
raise RuntimeError("Got no task creation message.") |
|
|
|
sub_tasks_msg = task_response.msgs[0] |
|
return get_task_list(sub_tasks_msg.content) |
|
|
|
|
|
@track_agent(name="TaskPrioritizationAgent") |
|
class TaskPrioritizationAgent(ChatAgent): |
|
r"""An agent that helps re-prioritize the task list and |
|
returns numbered prioritized list. Modified from |
|
`BabyAGI <https://github.com/yoheinakajima/babyagi>`_. |
|
|
|
Attributes: |
|
task_prioritization_prompt (TextPrompt): A prompt for the agent to |
|
prioritize tasks. |
|
|
|
Args: |
|
objective (Union[str, TextPrompt]): The objective of the Agent to |
|
perform the task. |
|
model (BaseModelBackend, optional): The LLM backend to use for |
|
generating responses. (default: :obj:`OpenAIModel` with |
|
`GPT_4O_MINI`) |
|
output_language (str, optional): The language to be output by the |
|
agent. (default: :obj:`None`) |
|
message_window_size (int, optional): The maximum number of previous |
|
messages to include in the context window. If `None`, no windowing |
|
is performed. (default: :obj:`None`) |
|
""" |
|
|
|
def __init__( |
|
self, |
|
objective: Union[str, TextPrompt], |
|
model: Optional[BaseModelBackend] = None, |
|
output_language: Optional[str] = None, |
|
message_window_size: Optional[int] = None, |
|
) -> None: |
|
task_prioritization_prompt = TextPrompt( |
|
"""Prioritize the following tasks : {task_list}. |
|
Consider the ultimate objective of you: {objective}. |
|
Tasks should be sorted from highest to lowest priority, where higher-priority \ |
|
tasks are those that act as pre-requisites or are more essential for meeting \ |
|
the objective. Return one task per line in your response. |
|
Do not remove or modify any tasks. |
|
The result must be a numbered list in the format: |
|
|
|
#. First task |
|
#. Second task |
|
|
|
The entries must be consecutively numbered, starting with 1. |
|
The number of each entry must be followed by a period. |
|
Do not include any headers before your ranked list or follow your list \ |
|
with any other output.""" |
|
) |
|
|
|
self.task_prioritization_prompt = task_prioritization_prompt.format( |
|
objective=objective |
|
) |
|
self.objective = objective |
|
|
|
system_message = BaseMessage( |
|
role_name="Task Prioritizer", |
|
role_type=RoleType.ASSISTANT, |
|
meta_dict=None, |
|
content="You are a helpful task prioritizer.", |
|
) |
|
|
|
super().__init__( |
|
system_message, |
|
model=model, |
|
output_language=output_language, |
|
message_window_size=message_window_size, |
|
) |
|
|
|
def run( |
|
self, |
|
task_list: List[str], |
|
) -> List[str]: |
|
r"""Prioritize the task list given the agent objective. |
|
|
|
Args: |
|
task_list (List[str]): The unprioritized tasks of agent. |
|
|
|
Returns: |
|
List[str]: The new prioritized task list generated by the Agent. |
|
""" |
|
task_prioritization_prompt = self.task_prioritization_prompt.format( |
|
task_list=task_list |
|
) |
|
|
|
task_msg = BaseMessage.make_user_message( |
|
role_name="Task Prioritizer", content=task_prioritization_prompt |
|
) |
|
|
|
task_response = self.step(task_msg) |
|
|
|
if task_response.terminated: |
|
raise RuntimeError("Task prioritization failed.") |
|
if len(task_response.msgs) == 0: |
|
raise RuntimeError("Got no task prioritization message.") |
|
|
|
sub_tasks_msg = task_response.msgs[0] |
|
return get_task_list(sub_tasks_msg.content) |
|
|