File size: 14,654 Bytes
62da328 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from typing import Any, Dict, List, Optional, Union
from camel.agents.chat_agent import ChatAgent
from camel.messages import BaseMessage
from camel.models import BaseModelBackend
from camel.prompts import PromptTemplateGenerator, TextPrompt
from camel.types import RoleType, TaskType
from camel.utils import get_task_list
# AgentOps decorator setting
try:
import os
if os.getenv("AGENTOPS_API_KEY") is not None:
from agentops import track_agent
else:
raise ImportError
except (ImportError, AttributeError):
from camel.utils import track_agent
@track_agent(name="TaskSpecifyAgent")
class TaskSpecifyAgent(ChatAgent):
r"""An agent that specifies a given task prompt by prompting the user to
provide more details.
Attributes:
DEFAULT_WORD_LIMIT (int): The default word limit for the task prompt.
task_specify_prompt (TextPrompt): The prompt for specifying the task.
Args:
model (BaseModelBackend, optional): The model backend to use for
generating responses. (default: :obj:`OpenAIModel` with
`GPT_4O_MINI`)
task_type (TaskType, optional): The type of task for which to generate
a prompt. (default: :obj:`TaskType.AI_SOCIETY`)
task_specify_prompt (Union[str, TextPrompt], optional): The prompt for
specifying the task. (default: :obj:`None`)
word_limit (int, optional): The word limit for the task prompt.
(default: :obj:`50`)
output_language (str, optional): The language to be output by the
agent. (default: :obj:`None`)
"""
DEFAULT_WORD_LIMIT = 50
def __init__(
self,
model: Optional[BaseModelBackend] = None,
task_type: TaskType = TaskType.AI_SOCIETY,
task_specify_prompt: Optional[Union[str, TextPrompt]] = None,
word_limit: int = DEFAULT_WORD_LIMIT,
output_language: Optional[str] = None,
) -> None:
self.task_specify_prompt: Union[str, TextPrompt]
if task_specify_prompt is None:
task_specify_prompt_template = (
PromptTemplateGenerator().get_task_specify_prompt(task_type)
)
self.task_specify_prompt = task_specify_prompt_template.format(
word_limit=word_limit
)
else:
self.task_specify_prompt = TextPrompt(task_specify_prompt)
system_message = BaseMessage(
role_name="Task Specifier",
role_type=RoleType.ASSISTANT,
meta_dict=None,
content="You can make a task more specific.",
)
super().__init__(
system_message,
model=model,
output_language=output_language,
)
def run(
self,
task_prompt: Union[str, TextPrompt],
meta_dict: Optional[Dict[str, Any]] = None,
) -> TextPrompt:
r"""Specify the given task prompt by providing more details.
Args:
task_prompt (Union[str, TextPrompt]): The original task
prompt.
meta_dict (Dict[str, Any], optional): A dictionary containing
additional information to include in the prompt.
(default: :obj:`None`)
Returns:
TextPrompt: The specified task prompt.
"""
self.reset()
task_specify_prompt = self.task_specify_prompt.format(task=task_prompt)
if meta_dict is not None:
task_specify_prompt = task_specify_prompt.format(**meta_dict)
task_msg = BaseMessage.make_user_message(
role_name="Task Specifier", content=task_specify_prompt
)
specifier_response = self.step(task_msg)
if specifier_response.terminated:
raise RuntimeError("Task specification failed.")
if len(specifier_response.msgs) == 0:
raise RuntimeError("Got no specification message.")
specified_task_msg = specifier_response.msgs[0]
return TextPrompt(specified_task_msg.content)
@track_agent(name="TaskPlannerAgent")
class TaskPlannerAgent(ChatAgent):
r"""An agent that helps divide a task into subtasks based on the input
task prompt.
Attributes:
task_planner_prompt (TextPrompt): A prompt for the agent to divide
the task into subtasks.
Args:
model (BaseModelBackend, optional): The model backend to use for
generating responses. (default: :obj:`OpenAIModel` with
`GPT_4O_MINI`)
output_language (str, optional): The language to be output by the
agent. (default: :obj:`None`)
"""
def __init__(
self,
model: Optional[BaseModelBackend] = None,
output_language: Optional[str] = None,
) -> None:
self.task_planner_prompt = TextPrompt(
"Divide this task into subtasks: {task}. Be concise."
)
system_message = BaseMessage(
role_name="Task Planner",
role_type=RoleType.ASSISTANT,
meta_dict=None,
content="You are a helpful task planner.",
)
super().__init__(
system_message,
model=model,
output_language=output_language,
)
def run(
self,
task_prompt: Union[str, TextPrompt],
) -> TextPrompt:
r"""Generate subtasks based on the input task prompt.
Args:
task_prompt (Union[str, TextPrompt]): The prompt for the task to
be divided into subtasks.
Returns:
TextPrompt: A prompt for the subtasks generated by the agent.
"""
# TODO: Maybe include roles information.
self.reset()
task_planner_prompt = self.task_planner_prompt.format(task=task_prompt)
task_msg = BaseMessage.make_user_message(
role_name="Task Planner", content=task_planner_prompt
)
task_response = self.step(task_msg)
if task_response.terminated:
raise RuntimeError("Task planning failed.")
if len(task_response.msgs) == 0:
raise RuntimeError("Got no task planning message.")
sub_tasks_msg = task_response.msgs[0]
return TextPrompt(sub_tasks_msg.content)
@track_agent(name="TaskCreationAgent")
class TaskCreationAgent(ChatAgent):
r"""An agent that helps create new tasks based on the objective
and last completed task. Compared to :obj:`TaskPlannerAgent`,
it's still a task planner, but it has more context information
like last task and incomplete task list. Modified from
`BabyAGI <https://github.com/yoheinakajima/babyagi>`_.
Attributes:
task_creation_prompt (TextPrompt): A prompt for the agent to
create new tasks.
Args:
role_name (str): The role name of the Agent to create the task.
objective (Union[str, TextPrompt]): The objective of the Agent to
perform the task.
model (BaseModelBackend, optional): The LLM backend to use for
generating responses. (default: :obj:`OpenAIModel` with
`GPT_4O_MINI`)
output_language (str, optional): The language to be output by the
agent. (default: :obj:`None`)
message_window_size (int, optional): The maximum number of previous
messages to include in the context window. If `None`, no windowing
is performed. (default: :obj:`None`)
max_task_num (int, optional): The maximum number of planned
tasks in one round. (default: :obj:3)
"""
def __init__(
self,
role_name: str,
objective: Union[str, TextPrompt],
model: Optional[BaseModelBackend] = None,
output_language: Optional[str] = None,
message_window_size: Optional[int] = None,
max_task_num: Optional[int] = 3,
) -> None:
task_creation_prompt = TextPrompt(
"""Create new a task with the following objective: {objective}.
Never forget you are a Task Creator of {role_name}.
You must instruct me based on my expertise and your needs to solve the task.
You should consider past solved tasks and in-progress tasks: {task_list}.
The new created tasks must not overlap with these past tasks.
The result must be a numbered list in the format:
#. First Task
#. Second Task
#. Third Task
You can only give me up to {max_task_num} tasks at a time. \
Each task should be concise, concrete and doable for a {role_name}.
You should make task plan and not ask me questions.
If you think no new tasks are needed right now, write "No tasks to add."
Now start to give me new tasks one by one. No more than three tasks.
Be concrete.
"""
)
self.task_creation_prompt = task_creation_prompt.format(
objective=objective, role_name=role_name, max_task_num=max_task_num
)
self.objective = objective
system_message = BaseMessage(
role_name="Task Creator",
role_type=RoleType.ASSISTANT,
meta_dict=None,
content="You are a helpful task creator.",
)
super().__init__(
system_message,
model=model,
output_language=output_language,
message_window_size=message_window_size,
)
def run(
self,
task_list: List[str],
) -> List[str]:
r"""Generate subtasks based on the previous task results and
incomplete task list.
Args:
task_list (List[str]): The completed or in-progress
tasks which should not overlap with new created tasks.
Returns:
List[str]: The new task list generated by the Agent.
"""
if len(task_list) > 0:
task_creation_prompt = self.task_creation_prompt.format(
task_list=task_list
)
else:
task_creation_prompt = self.task_creation_prompt.format(
task_list=""
)
task_msg = BaseMessage.make_user_message(
role_name="Task Creator", content=task_creation_prompt
)
task_response = self.step(task_msg)
if task_response.terminated:
raise RuntimeError("Task creation failed.")
if len(task_response.msgs) == 0:
raise RuntimeError("Got no task creation message.")
sub_tasks_msg = task_response.msgs[0]
return get_task_list(sub_tasks_msg.content)
@track_agent(name="TaskPrioritizationAgent")
class TaskPrioritizationAgent(ChatAgent):
r"""An agent that helps re-prioritize the task list and
returns numbered prioritized list. Modified from
`BabyAGI <https://github.com/yoheinakajima/babyagi>`_.
Attributes:
task_prioritization_prompt (TextPrompt): A prompt for the agent to
prioritize tasks.
Args:
objective (Union[str, TextPrompt]): The objective of the Agent to
perform the task.
model (BaseModelBackend, optional): The LLM backend to use for
generating responses. (default: :obj:`OpenAIModel` with
`GPT_4O_MINI`)
output_language (str, optional): The language to be output by the
agent. (default: :obj:`None`)
message_window_size (int, optional): The maximum number of previous
messages to include in the context window. If `None`, no windowing
is performed. (default: :obj:`None`)
"""
def __init__(
self,
objective: Union[str, TextPrompt],
model: Optional[BaseModelBackend] = None,
output_language: Optional[str] = None,
message_window_size: Optional[int] = None,
) -> None:
task_prioritization_prompt = TextPrompt(
"""Prioritize the following tasks : {task_list}.
Consider the ultimate objective of you: {objective}.
Tasks should be sorted from highest to lowest priority, where higher-priority \
tasks are those that act as pre-requisites or are more essential for meeting \
the objective. Return one task per line in your response.
Do not remove or modify any tasks.
The result must be a numbered list in the format:
#. First task
#. Second task
The entries must be consecutively numbered, starting with 1.
The number of each entry must be followed by a period.
Do not include any headers before your ranked list or follow your list \
with any other output."""
)
self.task_prioritization_prompt = task_prioritization_prompt.format(
objective=objective
)
self.objective = objective
system_message = BaseMessage(
role_name="Task Prioritizer",
role_type=RoleType.ASSISTANT,
meta_dict=None,
content="You are a helpful task prioritizer.",
)
super().__init__(
system_message,
model=model,
output_language=output_language,
message_window_size=message_window_size,
)
def run(
self,
task_list: List[str],
) -> List[str]:
r"""Prioritize the task list given the agent objective.
Args:
task_list (List[str]): The unprioritized tasks of agent.
Returns:
List[str]: The new prioritized task list generated by the Agent.
"""
task_prioritization_prompt = self.task_prioritization_prompt.format(
task_list=task_list
)
task_msg = BaseMessage.make_user_message(
role_name="Task Prioritizer", content=task_prioritization_prompt
)
task_response = self.step(task_msg)
if task_response.terminated:
raise RuntimeError("Task prioritization failed.")
if len(task_response.msgs) == 0:
raise RuntimeError("Got no task prioritization message.")
sub_tasks_msg = task_response.msgs[0]
return get_task_list(sub_tasks_msg.content)
|