File size: 4,290 Bytes
4cf8660 0848a53 98ef7f1 4cf8660 220d4e7 4cf8660 3808745 4cf8660 3808745 4cf8660 7a12aab 3808745 7a12aab 3808745 7a12aab 4cf8660 3808745 4cf8660 3808745 4cf8660 0848a53 4cf8660 220d4e7 4cf8660 6404ebc 4cf8660 3808745 4cf8660 0848a53 e10a48c d767c19 0848a53 4cf8660 0848a53 4cf8660 3808745 4cf8660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from dotenv import load_dotenv
import sys
import os
from camel.models import ModelFactory
from camel.toolkits import (
SearchToolkit,
BrowserToolkit,
FileWriteToolkit,
TerminalToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.logger import set_log_level
from owl.utils import run_society
from camel.societies import RolePlaying
import pathlib
base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))
set_log_level(level="DEBUG")
def construct_society(question: str) -> RolePlaying:
r"""Construct a society of agents based on the given question.
Args:
question (str): The task or question to be addressed by the society.
Returns:
RolePlaying: A configured society of agents ready to address the
question.
"""
# Create models for different components
models = {
"user": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
"assistant": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
"browsing": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
"planning": ModelFactory.create(
model_platform=ModelPlatformType.OPENAI,
model_type=ModelType.GPT_4O,
model_config_dict={"temperature": 0},
),
}
# Configure toolkits
tools = [
*BrowserToolkit(
headless=False, # Set to True for headless mode (e.g., on remote servers)
web_agent_model=models["browsing"],
planning_agent_model=models["planning"],
).get_tools(),
SearchToolkit().search_duckduckgo,
SearchToolkit().search_wiki,
*FileWriteToolkit(output_dir="./").get_tools(),
*TerminalToolkit().get_tools(),
]
# Configure agent roles and parameters
user_agent_kwargs = {"model": models["user"]}
assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}
# Configure task parameters
task_kwargs = {
"task_prompt": question,
"with_task_specify": False,
}
# Create and return the society
society = RolePlaying(
**task_kwargs,
user_role_name="user",
user_agent_kwargs=user_agent_kwargs,
assistant_role_name="assistant",
assistant_agent_kwargs=assistant_agent_kwargs,
)
return society
def main():
r"""Main function to run the OWL system with an example question."""
# Example research question
default_task = f"""打开百度搜索,总结一下camel-ai的camel框架的github star、fork数目等,并把数字用plot包写成python文件保存到"+{os.path.join
(base_dir, 'final_output')}+",用本地终端执行python文件显示图出来给我"""
# Override default task if command line argument is provided
task = sys.argv[1] if len(sys.argv) > 1 else default_task
# Construct and run the society
society = construct_society(task)
answer, chat_history, token_count = run_society(society)
# Output the result
print(
f"\033[94mAnswer: {answer}\nChat History: {chat_history}\ntoken_count:{token_count}\033[0m"
)
if __name__ == "__main__":
main()
|