File size: 4,290 Bytes
4cf8660
 
 
 
 
 
 
 
 
 
 
 
 
 
0848a53
98ef7f1
4cf8660
 
 
220d4e7
4cf8660
3808745
4cf8660
 
 
 
3808745
 
4cf8660
7a12aab
3808745
7a12aab
 
 
3808745
7a12aab
4cf8660
3808745
 
4cf8660
 
 
 
 
 
3808745
4cf8660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0848a53
4cf8660
 
 
 
 
 
 
 
 
 
 
 
 
220d4e7
4cf8660
6404ebc
4cf8660
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3808745
4cf8660
 
 
 
 
 
 
 
 
 
 
 
 
0848a53
e10a48c
d767c19
0848a53
 
 
4cf8660
0848a53
4cf8660
 
 
3808745
 
 
4cf8660
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
from dotenv import load_dotenv
import sys
import os
from camel.models import ModelFactory
from camel.toolkits import (
    SearchToolkit,
    BrowserToolkit,
    FileWriteToolkit,
    TerminalToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.logger import set_log_level

from owl.utils import run_society
from camel.societies import RolePlaying

import pathlib

base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))

set_log_level(level="DEBUG")


def construct_society(question: str) -> RolePlaying:
    r"""Construct a society of agents based on the given question.

    Args:
        question (str): The task or question to be addressed by the society.

    Returns:
        RolePlaying: A configured society of agents ready to address the
            question.
    """

    # Create models for different components
    models = {
        "user": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI,
            model_type=ModelType.GPT_4O,
            model_config_dict={"temperature": 0},
        ),
        "assistant": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI,
            model_type=ModelType.GPT_4O,
            model_config_dict={"temperature": 0},
        ),
        "browsing": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI,
            model_type=ModelType.GPT_4O,
            model_config_dict={"temperature": 0},
        ),
        "planning": ModelFactory.create(
            model_platform=ModelPlatformType.OPENAI,
            model_type=ModelType.GPT_4O,
            model_config_dict={"temperature": 0},
        ),
    }

    # Configure toolkits
    tools = [
        *BrowserToolkit(
            headless=False,  # Set to True for headless mode (e.g., on remote servers)
            web_agent_model=models["browsing"],
            planning_agent_model=models["planning"],
        ).get_tools(),
        SearchToolkit().search_duckduckgo,
        SearchToolkit().search_wiki,
        *FileWriteToolkit(output_dir="./").get_tools(),
        *TerminalToolkit().get_tools(),
    ]

    # Configure agent roles and parameters
    user_agent_kwargs = {"model": models["user"]}
    assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}

    # Configure task parameters
    task_kwargs = {
        "task_prompt": question,
        "with_task_specify": False,
    }

    # Create and return the society
    society = RolePlaying(
        **task_kwargs,
        user_role_name="user",
        user_agent_kwargs=user_agent_kwargs,
        assistant_role_name="assistant",
        assistant_agent_kwargs=assistant_agent_kwargs,
    )

    return society


def main():
    r"""Main function to run the OWL system with an example question."""
    # Example research question
    default_task = f"""打开百度搜索,总结一下camel-ai的camel框架的github star、fork数目等,并把数字用plot包写成python文件保存到"+{os.path.join
(base_dir, 'final_output')}+",用本地终端执行python文件显示图出来给我"""

    # Override default task if command line argument is provided
    task = sys.argv[1] if len(sys.argv) > 1 else default_task

    # Construct and run the society
    society = construct_society(task)
    answer, chat_history, token_count = run_society(society)

    # Output the result
    print(
        f"\033[94mAnswer: {answer}\nChat History: {chat_history}\ntoken_count:{token_count}\033[0m"
    )


if __name__ == "__main__":
    main()