Commit
·
3808745
1
Parent(s):
4ddd969
update wendong
Browse files- owl/.env_template +9 -9
- owl/examples/run.py +5 -4
- owl/examples/run_deepseek_zh.py +7 -7
- owl/examples/run_mini.py +6 -4
- owl/examples/run_ollama.py +6 -4
- owl/examples/run_openai_compatiable_model.py +5 -5
- owl/examples/run_qwen_mini_zh.py +5 -3
- owl/examples/run_qwen_zh.py +5 -4
- owl/examples/run_terminal.py +10 -6
- owl/examples/run_terminal_zh.py +13 -7
- owl/nextwebapp.py +193 -202
- owl/utils/enhanced_role_playing.py +8 -0
- owl/webapp_zh.py +830 -494
- pyproject.toml +1 -1
- requirements.txt +1 -1
- uv.lock +4 -4
owl/.env_template
CHANGED
@@ -1,6 +1,9 @@
|
|
1 |
-
|
|
|
|
|
|
|
2 |
|
3 |
-
# OPENAI API
|
4 |
# OPENAI_API_KEY= ""
|
5 |
# OPENAI_API_BASE_URL=""
|
6 |
|
@@ -15,15 +18,12 @@
|
|
15 |
#===========================================
|
16 |
|
17 |
# Google Search API (https://developers.google.com/custom-search/v1/overview)
|
18 |
-
GOOGLE_API_KEY=""
|
19 |
-
SEARCH_ENGINE_ID=""
|
20 |
-
|
21 |
-
# Hugging Face API (https://huggingface.co/join)
|
22 |
-
HF_TOKEN=""
|
23 |
|
24 |
# Chunkr API (https://chunkr.ai/)
|
25 |
-
CHUNKR_API_KEY=""
|
26 |
|
27 |
# Firecrawl API (https://www.firecrawl.dev/)
|
28 |
-
FIRECRAWL_API_KEY=""
|
29 |
#FIRECRAWL_API_URL="https://api.firecrawl.dev"
|
|
|
1 |
+
#===========================================
|
2 |
+
# MODEL & API
|
3 |
+
# (See https://docs.camel-ai.org/key_modules/models.html#)
|
4 |
+
#===========================================
|
5 |
|
6 |
+
# OPENAI API (https://platform.openai.com/api-keys)
|
7 |
# OPENAI_API_KEY= ""
|
8 |
# OPENAI_API_BASE_URL=""
|
9 |
|
|
|
18 |
#===========================================
|
19 |
|
20 |
# Google Search API (https://developers.google.com/custom-search/v1/overview)
|
21 |
+
# GOOGLE_API_KEY=""
|
22 |
+
# SEARCH_ENGINE_ID=""
|
|
|
|
|
|
|
23 |
|
24 |
# Chunkr API (https://chunkr.ai/)
|
25 |
+
# CHUNKR_API_KEY=""
|
26 |
|
27 |
# Firecrawl API (https://www.firecrawl.dev/)
|
28 |
+
#FIRECRAWL_API_KEY=""
|
29 |
#FIRECRAWL_API_URL="https://api.firecrawl.dev"
|
owl/examples/run.py
CHANGED
@@ -25,22 +25,23 @@ from camel.toolkits import (
|
|
25 |
)
|
26 |
from camel.types import ModelPlatformType, ModelType
|
27 |
from camel.logger import set_log_level
|
|
|
28 |
|
29 |
-
from owl.utils import
|
30 |
|
31 |
load_dotenv()
|
32 |
|
33 |
set_log_level(level="DEBUG")
|
34 |
|
35 |
|
36 |
-
def construct_society(question: str) ->
|
37 |
r"""Construct a society of agents based on the given question.
|
38 |
|
39 |
Args:
|
40 |
question (str): The task or question to be addressed by the society.
|
41 |
|
42 |
Returns:
|
43 |
-
|
44 |
"""
|
45 |
|
46 |
# Create models for different components
|
@@ -112,7 +113,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
112 |
}
|
113 |
|
114 |
# Create and return the society
|
115 |
-
society =
|
116 |
**task_kwargs,
|
117 |
user_role_name="user",
|
118 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
25 |
)
|
26 |
from camel.types import ModelPlatformType, ModelType
|
27 |
from camel.logger import set_log_level
|
28 |
+
from camel.societies import RolePlaying
|
29 |
|
30 |
+
from owl.utils import run_society, DocumentProcessingToolkit
|
31 |
|
32 |
load_dotenv()
|
33 |
|
34 |
set_log_level(level="DEBUG")
|
35 |
|
36 |
|
37 |
+
def construct_society(question: str) -> RolePlaying:
|
38 |
r"""Construct a society of agents based on the given question.
|
39 |
|
40 |
Args:
|
41 |
question (str): The task or question to be addressed by the society.
|
42 |
|
43 |
Returns:
|
44 |
+
RolePlaying: A configured society of agents ready to address the question.
|
45 |
"""
|
46 |
|
47 |
# Create models for different components
|
|
|
113 |
}
|
114 |
|
115 |
# Create and return the society
|
116 |
+
society = RolePlaying(
|
117 |
**task_kwargs,
|
118 |
user_role_name="user",
|
119 |
user_agent_kwargs=user_agent_kwargs,
|
owl/examples/run_deepseek_zh.py
CHANGED
@@ -31,7 +31,9 @@ from camel.toolkits import (
|
|
31 |
from camel.types import ModelPlatformType, ModelType
|
32 |
|
33 |
|
34 |
-
from owl.utils import
|
|
|
|
|
35 |
|
36 |
from camel.logger import set_log_level
|
37 |
|
@@ -40,14 +42,14 @@ set_log_level(level="DEBUG")
|
|
40 |
load_dotenv()
|
41 |
|
42 |
|
43 |
-
def construct_society(question: str) ->
|
44 |
r"""Construct a society of agents based on the given question.
|
45 |
|
46 |
Args:
|
47 |
question (str): The task or question to be addressed by the society.
|
48 |
|
49 |
Returns:
|
50 |
-
|
51 |
"""
|
52 |
|
53 |
# Create models for different components
|
@@ -84,7 +86,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
84 |
}
|
85 |
|
86 |
# Create and return the society
|
87 |
-
society =
|
88 |
**task_kwargs,
|
89 |
user_role_name="user",
|
90 |
user_agent_kwargs=user_agent_kwargs,
|
@@ -99,9 +101,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
99 |
def main():
|
100 |
r"""Main function to run the OWL system with an example question."""
|
101 |
# Example research question
|
102 |
-
question =
|
103 |
-
"搜索OWL项目最近的新闻并生成一篇报告,最后保存到本地。"
|
104 |
-
)
|
105 |
|
106 |
# Construct and run the society
|
107 |
society = construct_society(question)
|
|
|
31 |
from camel.types import ModelPlatformType, ModelType
|
32 |
|
33 |
|
34 |
+
from owl.utils import run_society
|
35 |
+
|
36 |
+
from camel.societies import RolePlaying
|
37 |
|
38 |
from camel.logger import set_log_level
|
39 |
|
|
|
42 |
load_dotenv()
|
43 |
|
44 |
|
45 |
+
def construct_society(question: str) -> RolePlaying:
|
46 |
r"""Construct a society of agents based on the given question.
|
47 |
|
48 |
Args:
|
49 |
question (str): The task or question to be addressed by the society.
|
50 |
|
51 |
Returns:
|
52 |
+
RolePlaying: A configured society of agents ready to address the question.
|
53 |
"""
|
54 |
|
55 |
# Create models for different components
|
|
|
86 |
}
|
87 |
|
88 |
# Create and return the society
|
89 |
+
society = RolePlaying(
|
90 |
**task_kwargs,
|
91 |
user_role_name="user",
|
92 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
101 |
def main():
|
102 |
r"""Main function to run the OWL system with an example question."""
|
103 |
# Example research question
|
104 |
+
question = "搜索OWL项目最近的新闻并生成一篇报告,最后保存到本地。"
|
|
|
|
|
105 |
|
106 |
# Construct and run the society
|
107 |
society = construct_society(question)
|
owl/examples/run_mini.py
CHANGED
@@ -22,20 +22,22 @@ from camel.toolkits import (
|
|
22 |
from camel.types import ModelPlatformType, ModelType
|
23 |
from camel.logger import set_log_level
|
24 |
|
25 |
-
from owl.utils import
|
|
|
|
|
26 |
|
27 |
load_dotenv()
|
28 |
set_log_level(level="DEBUG")
|
29 |
|
30 |
|
31 |
-
def construct_society(question: str) ->
|
32 |
r"""Construct a society of agents based on the given question.
|
33 |
|
34 |
Args:
|
35 |
question (str): The task or question to be addressed by the society.
|
36 |
|
37 |
Returns:
|
38 |
-
|
39 |
question.
|
40 |
"""
|
41 |
|
@@ -86,7 +88,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
86 |
}
|
87 |
|
88 |
# Create and return the society
|
89 |
-
society =
|
90 |
**task_kwargs,
|
91 |
user_role_name="user",
|
92 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
22 |
from camel.types import ModelPlatformType, ModelType
|
23 |
from camel.logger import set_log_level
|
24 |
|
25 |
+
from owl.utils import run_society
|
26 |
+
|
27 |
+
from camel.societies import RolePlaying
|
28 |
|
29 |
load_dotenv()
|
30 |
set_log_level(level="DEBUG")
|
31 |
|
32 |
|
33 |
+
def construct_society(question: str) -> RolePlaying:
|
34 |
r"""Construct a society of agents based on the given question.
|
35 |
|
36 |
Args:
|
37 |
question (str): The task or question to be addressed by the society.
|
38 |
|
39 |
Returns:
|
40 |
+
RolePlaying: A configured society of agents ready to address the
|
41 |
question.
|
42 |
"""
|
43 |
|
|
|
88 |
}
|
89 |
|
90 |
# Create and return the society
|
91 |
+
society = RolePlaying(
|
92 |
**task_kwargs,
|
93 |
user_role_name="user",
|
94 |
user_agent_kwargs=user_agent_kwargs,
|
owl/examples/run_ollama.py
CHANGED
@@ -25,7 +25,9 @@ from camel.toolkits import (
|
|
25 |
)
|
26 |
from camel.types import ModelPlatformType
|
27 |
|
28 |
-
from owl.utils import
|
|
|
|
|
29 |
|
30 |
from camel.logger import set_log_level
|
31 |
|
@@ -34,14 +36,14 @@ set_log_level(level="DEBUG")
|
|
34 |
load_dotenv()
|
35 |
|
36 |
|
37 |
-
def construct_society(question: str) ->
|
38 |
r"""Construct a society of agents based on the given question.
|
39 |
|
40 |
Args:
|
41 |
question (str): The task or question to be addressed by the society.
|
42 |
|
43 |
Returns:
|
44 |
-
|
45 |
"""
|
46 |
|
47 |
# Create models for different components
|
@@ -105,7 +107,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
105 |
}
|
106 |
|
107 |
# Create and return the society
|
108 |
-
society =
|
109 |
**task_kwargs,
|
110 |
user_role_name="user",
|
111 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
25 |
)
|
26 |
from camel.types import ModelPlatformType
|
27 |
|
28 |
+
from owl.utils import run_society
|
29 |
+
|
30 |
+
from camel.societies import RolePlaying
|
31 |
|
32 |
from camel.logger import set_log_level
|
33 |
|
|
|
36 |
load_dotenv()
|
37 |
|
38 |
|
39 |
+
def construct_society(question: str) -> RolePlaying:
|
40 |
r"""Construct a society of agents based on the given question.
|
41 |
|
42 |
Args:
|
43 |
question (str): The task or question to be addressed by the society.
|
44 |
|
45 |
Returns:
|
46 |
+
RolePlaying: A configured society of agents ready to address the question.
|
47 |
"""
|
48 |
|
49 |
# Create models for different components
|
|
|
107 |
}
|
108 |
|
109 |
# Create and return the society
|
110 |
+
society = RolePlaying(
|
111 |
**task_kwargs,
|
112 |
user_role_name="user",
|
113 |
user_agent_kwargs=user_agent_kwargs,
|
owl/examples/run_openai_compatiable_model.py
CHANGED
@@ -25,8 +25,8 @@ from camel.toolkits import (
|
|
25 |
)
|
26 |
from camel.types import ModelPlatformType
|
27 |
|
28 |
-
from owl.utils import
|
29 |
-
|
30 |
from camel.logger import set_log_level
|
31 |
|
32 |
set_log_level(level="DEBUG")
|
@@ -34,14 +34,14 @@ set_log_level(level="DEBUG")
|
|
34 |
load_dotenv()
|
35 |
|
36 |
|
37 |
-
def construct_society(question: str) ->
|
38 |
r"""Construct a society of agents based on the given question.
|
39 |
|
40 |
Args:
|
41 |
question (str): The task or question to be addressed by the society.
|
42 |
|
43 |
Returns:
|
44 |
-
|
45 |
"""
|
46 |
|
47 |
# Create models for different components
|
@@ -110,7 +110,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
110 |
}
|
111 |
|
112 |
# Create and return the society
|
113 |
-
society =
|
114 |
**task_kwargs,
|
115 |
user_role_name="user",
|
116 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
25 |
)
|
26 |
from camel.types import ModelPlatformType
|
27 |
|
28 |
+
from owl.utils import run_society
|
29 |
+
from camel.societies import RolePlaying
|
30 |
from camel.logger import set_log_level
|
31 |
|
32 |
set_log_level(level="DEBUG")
|
|
|
34 |
load_dotenv()
|
35 |
|
36 |
|
37 |
+
def construct_society(question: str) -> RolePlaying:
|
38 |
r"""Construct a society of agents based on the given question.
|
39 |
|
40 |
Args:
|
41 |
question (str): The task or question to be addressed by the society.
|
42 |
|
43 |
Returns:
|
44 |
+
RolePlaying: A configured society of agents ready to address the question.
|
45 |
"""
|
46 |
|
47 |
# Create models for different components
|
|
|
110 |
}
|
111 |
|
112 |
# Create and return the society
|
113 |
+
society = RolePlaying(
|
114 |
**task_kwargs,
|
115 |
user_role_name="user",
|
116 |
user_agent_kwargs=user_agent_kwargs,
|
owl/examples/run_qwen_mini_zh.py
CHANGED
@@ -22,7 +22,9 @@ from camel.models import ModelFactory
|
|
22 |
from camel.toolkits import BrowserToolkit, SearchToolkit, FileWriteToolkit
|
23 |
from camel.types import ModelPlatformType, ModelType
|
24 |
|
25 |
-
from owl.utils import
|
|
|
|
|
26 |
|
27 |
from camel.logger import set_log_level
|
28 |
|
@@ -31,7 +33,7 @@ set_log_level(level="DEBUG")
|
|
31 |
load_dotenv()
|
32 |
|
33 |
|
34 |
-
def construct_society(question: str) ->
|
35 |
r"""Construct the society based on the question."""
|
36 |
|
37 |
user_role_name = "user"
|
@@ -82,7 +84,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
82 |
"with_task_specify": False,
|
83 |
}
|
84 |
|
85 |
-
society =
|
86 |
**task_kwargs,
|
87 |
user_role_name=user_role_name,
|
88 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
22 |
from camel.toolkits import BrowserToolkit, SearchToolkit, FileWriteToolkit
|
23 |
from camel.types import ModelPlatformType, ModelType
|
24 |
|
25 |
+
from owl.utils import run_society
|
26 |
+
|
27 |
+
from camel.societies import RolePlaying
|
28 |
|
29 |
from camel.logger import set_log_level
|
30 |
|
|
|
33 |
load_dotenv()
|
34 |
|
35 |
|
36 |
+
def construct_society(question: str) -> RolePlaying:
|
37 |
r"""Construct the society based on the question."""
|
38 |
|
39 |
user_role_name = "user"
|
|
|
84 |
"with_task_specify": False,
|
85 |
}
|
86 |
|
87 |
+
society = RolePlaying(
|
88 |
**task_kwargs,
|
89 |
user_role_name=user_role_name,
|
90 |
user_agent_kwargs=user_agent_kwargs,
|
owl/examples/run_qwen_zh.py
CHANGED
@@ -28,8 +28,9 @@ from camel.toolkits import (
|
|
28 |
FileWriteToolkit,
|
29 |
)
|
30 |
from camel.types import ModelPlatformType, ModelType
|
|
|
31 |
|
32 |
-
from owl.utils import
|
33 |
|
34 |
from camel.logger import set_log_level
|
35 |
|
@@ -38,7 +39,7 @@ set_log_level(level="DEBUG")
|
|
38 |
load_dotenv()
|
39 |
|
40 |
|
41 |
-
def construct_society(question: str) ->
|
42 |
"""
|
43 |
Construct a society of agents based on the given question.
|
44 |
|
@@ -46,7 +47,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
46 |
question (str): The task or question to be addressed by the society.
|
47 |
|
48 |
Returns:
|
49 |
-
|
50 |
"""
|
51 |
|
52 |
# Create models for different components
|
@@ -118,7 +119,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
118 |
}
|
119 |
|
120 |
# Create and return the society
|
121 |
-
society =
|
122 |
**task_kwargs,
|
123 |
user_role_name="user",
|
124 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
28 |
FileWriteToolkit,
|
29 |
)
|
30 |
from camel.types import ModelPlatformType, ModelType
|
31 |
+
from camel.societies import RolePlaying
|
32 |
|
33 |
+
from owl.utils import run_society, DocumentProcessingToolkit
|
34 |
|
35 |
from camel.logger import set_log_level
|
36 |
|
|
|
39 |
load_dotenv()
|
40 |
|
41 |
|
42 |
+
def construct_society(question: str) -> RolePlaying:
|
43 |
"""
|
44 |
Construct a society of agents based on the given question.
|
45 |
|
|
|
47 |
question (str): The task or question to be addressed by the society.
|
48 |
|
49 |
Returns:
|
50 |
+
RolePlaying: A configured society of agents ready to address the question.
|
51 |
"""
|
52 |
|
53 |
# Create models for different components
|
|
|
119 |
}
|
120 |
|
121 |
# Create and return the society
|
122 |
+
society = RolePlaying(
|
123 |
**task_kwargs,
|
124 |
user_role_name="user",
|
125 |
user_agent_kwargs=user_agent_kwargs,
|
owl/examples/run_terminal.py
CHANGED
@@ -18,26 +18,28 @@ from camel.toolkits import (
|
|
18 |
SearchToolkit,
|
19 |
BrowserToolkit,
|
20 |
FileWriteToolkit,
|
21 |
-
TerminalToolkit
|
22 |
)
|
23 |
from camel.types import ModelPlatformType, ModelType
|
24 |
from camel.logger import set_log_level
|
25 |
|
26 |
-
from owl.utils import
|
|
|
27 |
|
28 |
load_dotenv()
|
29 |
set_log_level(level="DEBUG")
|
30 |
# Get current script directory
|
31 |
base_dir = os.path.dirname(os.path.abspath(__file__))
|
32 |
|
33 |
-
|
|
|
34 |
r"""Construct a society of agents based on the given question.
|
35 |
|
36 |
Args:
|
37 |
question (str): The task or question to be addressed by the society.
|
38 |
|
39 |
Returns:
|
40 |
-
|
41 |
question.
|
42 |
"""
|
43 |
|
@@ -89,7 +91,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
89 |
}
|
90 |
|
91 |
# Create and return the society
|
92 |
-
society =
|
93 |
**task_kwargs,
|
94 |
user_role_name="user",
|
95 |
user_agent_kwargs=user_agent_kwargs,
|
@@ -113,7 +115,9 @@ def main():
|
|
113 |
answer, chat_history, token_count = run_society(society)
|
114 |
|
115 |
# Output the result
|
116 |
-
print(
|
|
|
|
|
117 |
|
118 |
|
119 |
if __name__ == "__main__":
|
|
|
18 |
SearchToolkit,
|
19 |
BrowserToolkit,
|
20 |
FileWriteToolkit,
|
21 |
+
TerminalToolkit,
|
22 |
)
|
23 |
from camel.types import ModelPlatformType, ModelType
|
24 |
from camel.logger import set_log_level
|
25 |
|
26 |
+
from owl.utils import run_society
|
27 |
+
from camel.societies import RolePlaying
|
28 |
|
29 |
load_dotenv()
|
30 |
set_log_level(level="DEBUG")
|
31 |
# Get current script directory
|
32 |
base_dir = os.path.dirname(os.path.abspath(__file__))
|
33 |
|
34 |
+
|
35 |
+
def construct_society(question: str) -> RolePlaying:
|
36 |
r"""Construct a society of agents based on the given question.
|
37 |
|
38 |
Args:
|
39 |
question (str): The task or question to be addressed by the society.
|
40 |
|
41 |
Returns:
|
42 |
+
RolePlaying: A configured society of agents ready to address the
|
43 |
question.
|
44 |
"""
|
45 |
|
|
|
91 |
}
|
92 |
|
93 |
# Create and return the society
|
94 |
+
society = RolePlaying(
|
95 |
**task_kwargs,
|
96 |
user_role_name="user",
|
97 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
115 |
answer, chat_history, token_count = run_society(society)
|
116 |
|
117 |
# Output the result
|
118 |
+
print(
|
119 |
+
f"\033[94mAnswer: {answer}\nChat History: {chat_history}\ntoken_count:{token_count}\033[0m"
|
120 |
+
)
|
121 |
|
122 |
|
123 |
if __name__ == "__main__":
|
owl/examples/run_terminal_zh.py
CHANGED
@@ -18,27 +18,31 @@ from camel.toolkits import (
|
|
18 |
SearchToolkit,
|
19 |
BrowserToolkit,
|
20 |
FileWriteToolkit,
|
21 |
-
TerminalToolkit
|
22 |
)
|
23 |
from camel.types import ModelPlatformType, ModelType
|
24 |
from camel.logger import set_log_level
|
25 |
|
26 |
-
from owl.utils import
|
|
|
|
|
27 |
|
28 |
load_dotenv()
|
29 |
set_log_level(level="DEBUG")
|
30 |
-
|
|
|
31 |
# Get current script directory
|
32 |
base_dir = os.path.dirname(os.path.abspath(__file__))
|
33 |
|
34 |
-
|
|
|
35 |
r"""Construct a society of agents based on the given question.
|
36 |
|
37 |
Args:
|
38 |
question (str): The task or question to be addressed by the society.
|
39 |
|
40 |
Returns:
|
41 |
-
|
42 |
question.
|
43 |
"""
|
44 |
|
@@ -90,7 +94,7 @@ def construct_society(question: str) -> OwlRolePlaying:
|
|
90 |
}
|
91 |
|
92 |
# Create and return the society
|
93 |
-
society =
|
94 |
**task_kwargs,
|
95 |
user_role_name="user",
|
96 |
user_agent_kwargs=user_agent_kwargs,
|
@@ -112,7 +116,9 @@ def main():
|
|
112 |
answer, chat_history, token_count = run_society(society)
|
113 |
|
114 |
# Output the result
|
115 |
-
print(
|
|
|
|
|
116 |
|
117 |
|
118 |
if __name__ == "__main__":
|
|
|
18 |
SearchToolkit,
|
19 |
BrowserToolkit,
|
20 |
FileWriteToolkit,
|
21 |
+
TerminalToolkit,
|
22 |
)
|
23 |
from camel.types import ModelPlatformType, ModelType
|
24 |
from camel.logger import set_log_level
|
25 |
|
26 |
+
from owl.utils import run_society
|
27 |
+
from camel.societies import RolePlaying
|
28 |
+
import os
|
29 |
|
30 |
load_dotenv()
|
31 |
set_log_level(level="DEBUG")
|
32 |
+
|
33 |
+
|
34 |
# Get current script directory
|
35 |
base_dir = os.path.dirname(os.path.abspath(__file__))
|
36 |
|
37 |
+
|
38 |
+
def construct_society(question: str) -> RolePlaying:
|
39 |
r"""Construct a society of agents based on the given question.
|
40 |
|
41 |
Args:
|
42 |
question (str): The task or question to be addressed by the society.
|
43 |
|
44 |
Returns:
|
45 |
+
RolePlaying: A configured society of agents ready to address the
|
46 |
question.
|
47 |
"""
|
48 |
|
|
|
94 |
}
|
95 |
|
96 |
# Create and return the society
|
97 |
+
society = RolePlaying(
|
98 |
**task_kwargs,
|
99 |
user_role_name="user",
|
100 |
user_agent_kwargs=user_agent_kwargs,
|
|
|
116 |
answer, chat_history, token_count = run_society(society)
|
117 |
|
118 |
# Output the result
|
119 |
+
print(
|
120 |
+
f"\033[94mAnswer: {answer}\nChat History: {chat_history}\ntoken_count:{token_count}\033[0m"
|
121 |
+
)
|
122 |
|
123 |
|
124 |
if __name__ == "__main__":
|
owl/nextwebapp.py
CHANGED
@@ -1,14 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Import from the correct module path
|
2 |
from owl.utils import run_society
|
3 |
import os
|
4 |
import gradio as gr
|
5 |
-
import
|
6 |
-
import json
|
7 |
-
from typing import Tuple, List, Dict, Any
|
8 |
import importlib
|
9 |
from dotenv import load_dotenv, set_key, find_dotenv, unset_key
|
10 |
|
11 |
-
os.environ[
|
12 |
|
13 |
# Enhanced CSS with navigation bar and additional styling
|
14 |
custom_css = """
|
@@ -250,14 +261,14 @@ button.primary:hover {
|
|
250 |
# Dictionary containing module descriptions
|
251 |
MODULE_DESCRIPTIONS = {
|
252 |
"run": "默认模式:使用OpenAI模型的默认的智能体协作模式,适合大多数任务。",
|
253 |
-
"run_mini":"使用使用OpenAI模型最小化配置处理任务",
|
254 |
-
"run_deepseek_zh":"使用deepseek模型处理中文任务",
|
255 |
"run_terminal_zh": "终端模式:可执行命令行操作,支持网络搜索、文件处理等功能。适合需要系统交互的任务,使用OpenAI模型",
|
256 |
-
"run_gaia_roleplaying":"GAIA基准测试实现,用于评估Agent能力",
|
257 |
-
"run_openai_compatiable_model":"使用openai兼容模型处理任务",
|
258 |
-
"run_ollama":"使用本地ollama模型处理任务",
|
259 |
-
"run_qwen_mini_zh":"使用qwen模型最小化配置处理任务",
|
260 |
-
"run_qwen_zh":"使用qwen模型处理任务",
|
261 |
}
|
262 |
|
263 |
# 默认环境变量模板
|
@@ -292,12 +303,13 @@ FIRECRAWL_API_KEY=""
|
|
292 |
#FIRECRAWL_API_URL="https://api.firecrawl.dev"
|
293 |
"""
|
294 |
|
|
|
295 |
def format_chat_history(chat_history: List[Dict[str, str]]) -> List[List[str]]:
|
296 |
"""将聊天历史格式化为Gradio聊天组件可接受的格式
|
297 |
-
|
298 |
Args:
|
299 |
chat_history: 原始聊天历史
|
300 |
-
|
301 |
Returns:
|
302 |
List[List[str]]: 格式化后的聊天历史
|
303 |
"""
|
@@ -305,22 +317,23 @@ def format_chat_history(chat_history: List[Dict[str, str]]) -> List[List[str]]:
|
|
305 |
for message in chat_history:
|
306 |
user_msg = message.get("user", "")
|
307 |
assistant_msg = message.get("assistant", "")
|
308 |
-
|
309 |
if user_msg:
|
310 |
formatted_history.append([user_msg, None])
|
311 |
if assistant_msg and formatted_history:
|
312 |
formatted_history[-1][1] = assistant_msg
|
313 |
elif assistant_msg:
|
314 |
formatted_history.append([None, assistant_msg])
|
315 |
-
|
316 |
return formatted_history
|
317 |
|
|
|
318 |
def validate_input(question: str) -> bool:
|
319 |
"""验证用户输入是否有效
|
320 |
-
|
321 |
Args:
|
322 |
question: 用户问题
|
323 |
-
|
324 |
Returns:
|
325 |
bool: 输入是否有效
|
326 |
"""
|
@@ -329,121 +342,111 @@ def validate_input(question: str) -> bool:
|
|
329 |
return False
|
330 |
return True
|
331 |
|
332 |
-
|
|
|
|
|
|
|
333 |
"""运行OWL系统并返回结果
|
334 |
-
|
335 |
Args:
|
336 |
question: 用户问题
|
337 |
example_module: 要导入的示例模块名(如 "run_terminal_zh" 或 "run_deep")
|
338 |
-
|
339 |
Returns:
|
340 |
Tuple[...]: 回答、聊天历史、令牌计数、状态
|
341 |
"""
|
342 |
# 验证输入
|
343 |
if not validate_input(question):
|
344 |
-
return (
|
345 |
-
|
346 |
-
[],
|
347 |
-
"0",
|
348 |
-
"❌ 错误: 输入无效"
|
349 |
-
)
|
350 |
-
|
351 |
try:
|
352 |
# 确保环境变量已加载
|
353 |
load_dotenv(find_dotenv(), override=True)
|
354 |
# 检查模块是否在MODULE_DESCRIPTIONS中
|
355 |
if example_module not in MODULE_DESCRIPTIONS:
|
356 |
return (
|
357 |
-
f"所选模块 '{example_module}' 不受支持",
|
358 |
-
[],
|
359 |
-
"0",
|
360 |
-
|
361 |
)
|
362 |
-
|
363 |
# 动态导入目标模块
|
364 |
module_path = f"owl.examples.{example_module}"
|
365 |
try:
|
366 |
module = importlib.import_module(module_path)
|
367 |
except ImportError as ie:
|
368 |
return (
|
369 |
-
f"无法导入模块: {module_path}",
|
370 |
-
[],
|
371 |
-
"0",
|
372 |
-
f"❌ 错误: 模块 {example_module} 不存在或无法加载 - {str(ie)}"
|
373 |
)
|
374 |
except Exception as e:
|
375 |
-
return (
|
376 |
-
|
377 |
-
[],
|
378 |
-
"0",
|
379 |
-
f"❌ 错误: {str(e)}"
|
380 |
-
)
|
381 |
-
|
382 |
# 检查是否包含construct_society函数
|
383 |
if not hasattr(module, "construct_society"):
|
384 |
return (
|
385 |
-
f"模块 {module_path} 中未找到 construct_society 函数",
|
386 |
-
[],
|
387 |
-
"0",
|
388 |
-
|
389 |
)
|
390 |
-
|
391 |
# 构建社会模拟
|
392 |
try:
|
393 |
society = module.construct_society(question)
|
394 |
except Exception as e:
|
395 |
return (
|
396 |
-
f"构建社会模拟时发生错误: {str(e)}",
|
397 |
-
[],
|
398 |
-
"0",
|
399 |
-
f"❌ 错误: 构建失败 - {str(e)}"
|
400 |
)
|
401 |
-
|
402 |
# 运行社会模拟
|
403 |
try:
|
404 |
answer, chat_history, token_info = run_society(society)
|
405 |
except Exception as e:
|
406 |
return (
|
407 |
-
f"运行社会模拟时发生错误: {str(e)}",
|
408 |
-
[],
|
409 |
-
"0",
|
410 |
-
f"❌ 错误: 运行失败 - {str(e)}"
|
411 |
)
|
412 |
-
|
413 |
# 格式化聊天历史
|
414 |
try:
|
415 |
formatted_chat_history = format_chat_history(chat_history)
|
416 |
-
except Exception
|
417 |
# 如果格式化失败,返回空历史记录但继续处理
|
418 |
formatted_chat_history = []
|
419 |
-
|
420 |
# 安全地获取令牌计数
|
421 |
if not isinstance(token_info, dict):
|
422 |
token_info = {}
|
423 |
-
|
424 |
completion_tokens = token_info.get("completion_token_count", 0)
|
425 |
prompt_tokens = token_info.get("prompt_token_count", 0)
|
426 |
total_tokens = completion_tokens + prompt_tokens
|
427 |
-
|
428 |
return (
|
429 |
-
answer,
|
430 |
-
formatted_chat_history,
|
431 |
-
f"完成令牌: {completion_tokens:,} | 提示令牌: {prompt_tokens:,} | 总计: {total_tokens:,}",
|
432 |
-
"✅ 成功完成"
|
433 |
)
|
434 |
-
|
435 |
except Exception as e:
|
436 |
-
return (
|
437 |
-
|
438 |
-
[],
|
439 |
-
"0",
|
440 |
-
f"❌ 错误: {str(e)}"
|
441 |
-
)
|
442 |
|
443 |
def update_module_description(module_name: str) -> str:
|
444 |
"""返回所选模块的描述"""
|
445 |
return MODULE_DESCRIPTIONS.get(module_name, "无可用描述")
|
446 |
|
|
|
447 |
# 环境变量管理功能
|
448 |
def init_env_file():
|
449 |
"""初始化.env文件如果不存在"""
|
@@ -454,11 +457,12 @@ def init_env_file():
|
|
454 |
dotenv_path = find_dotenv()
|
455 |
return dotenv_path
|
456 |
|
|
|
457 |
def load_env_vars():
|
458 |
"""加载环境变量并返回字典格式"""
|
459 |
dotenv_path = init_env_file()
|
460 |
load_dotenv(dotenv_path, override=True)
|
461 |
-
|
462 |
env_vars = {}
|
463 |
with open(dotenv_path, "r") as f:
|
464 |
for line in f:
|
@@ -466,79 +470,84 @@ def load_env_vars():
|
|
466 |
if line and not line.startswith("#"):
|
467 |
if "=" in line:
|
468 |
key, value = line.split("=", 1)
|
469 |
-
env_vars[key.strip()] = value.strip().strip(
|
470 |
-
|
471 |
return env_vars
|
472 |
|
|
|
473 |
def save_env_vars(env_vars):
|
474 |
"""保存环境变量到.env文件"""
|
475 |
try:
|
476 |
dotenv_path = init_env_file()
|
477 |
-
|
478 |
# 保存每个环境变量
|
479 |
for key, value in env_vars.items():
|
480 |
if key and key.strip(): # 确保键不为空
|
481 |
set_key(dotenv_path, key.strip(), value.strip())
|
482 |
-
|
483 |
# 重新加载环境变量以确保生效
|
484 |
load_dotenv(dotenv_path, override=True)
|
485 |
-
|
486 |
return True, "环境变量已成功保存!"
|
487 |
except Exception as e:
|
488 |
return False, f"保存环境变量时出错: {str(e)}"
|
489 |
|
|
|
490 |
def add_env_var(key, value):
|
491 |
"""添加或更新单个环境变量"""
|
492 |
try:
|
493 |
if not key or not key.strip():
|
494 |
return False, "变量名不能为空"
|
495 |
-
|
496 |
dotenv_path = init_env_file()
|
497 |
set_key(dotenv_path, key.strip(), value.strip())
|
498 |
load_dotenv(dotenv_path, override=True)
|
499 |
-
|
500 |
return True, f"环境变量 {key} 已成功添加/更新!"
|
501 |
except Exception as e:
|
502 |
return False, f"添加环境变量时出错: {str(e)}"
|
503 |
|
|
|
504 |
def delete_env_var(key):
|
505 |
"""删除环境变量"""
|
506 |
try:
|
507 |
if not key or not key.strip():
|
508 |
return False, "变量名不能为空"
|
509 |
-
|
510 |
dotenv_path = init_env_file()
|
511 |
unset_key(dotenv_path, key.strip())
|
512 |
-
|
513 |
# 从当前进程环境中也删除
|
514 |
if key in os.environ:
|
515 |
del os.environ[key]
|
516 |
-
|
517 |
return True, f"环境变量 {key} 已成功删除!"
|
518 |
except Exception as e:
|
519 |
return False, f"删除环境变量时出错: {str(e)}"
|
520 |
|
|
|
521 |
def mask_sensitive_value(key: str, value: str) -> str:
|
522 |
"""对敏感信息进行掩码处理
|
523 |
-
|
524 |
Args:
|
525 |
key: 环境变量名
|
526 |
value: 环境变量值
|
527 |
-
|
528 |
Returns:
|
529 |
str: 处理后的值
|
530 |
"""
|
531 |
# 定义需要掩码的敏感关键词
|
532 |
-
sensitive_keywords = [
|
533 |
-
|
534 |
# 检查是否包含敏感关键词(不区分大小写)
|
535 |
is_sensitive = any(keyword in key.lower() for keyword in sensitive_keywords)
|
536 |
-
|
537 |
if is_sensitive and value:
|
538 |
# 如果是敏感信息且有值,则显示掩码
|
539 |
-
return
|
540 |
return value
|
541 |
|
|
|
542 |
def update_env_table():
|
543 |
"""更新环境变量表格显示,对敏感信息进行掩码处理"""
|
544 |
env_vars = load_env_vars()
|
@@ -546,6 +555,7 @@ def update_env_table():
|
|
546 |
masked_env_vars = [[k, mask_sensitive_value(k, v)] for k, v in env_vars.items()]
|
547 |
return masked_env_vars
|
548 |
|
|
|
549 |
def create_ui():
|
550 |
"""创建增强版Gradio界面"""
|
551 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue")) as app:
|
@@ -569,7 +579,7 @@ def create_ui():
|
|
569 |
<p>我们的愿景是彻底改变AI代理协作解决现实世界任务的方式。通过利用动态代理交互,OWL能够在多个领域实现更自然、高效和稳健的任务自动化。</p>
|
570 |
</div>
|
571 |
""")
|
572 |
-
|
573 |
with gr.Row(elem_id="features"):
|
574 |
gr.HTML("""
|
575 |
<div class="features-section">
|
@@ -610,7 +620,7 @@ def create_ui():
|
|
610 |
</div>
|
611 |
</div>
|
612 |
""")
|
613 |
-
|
614 |
with gr.Row():
|
615 |
with gr.Column(scale=2):
|
616 |
question_input = gr.Textbox(
|
@@ -620,26 +630,28 @@ def create_ui():
|
|
620 |
elem_id="question_input",
|
621 |
show_copy_button=True,
|
622 |
)
|
623 |
-
|
624 |
# 增强版模块选择下拉菜单
|
625 |
# 只包含MODULE_DESCRIPTIONS中定义的模块
|
626 |
module_dropdown = gr.Dropdown(
|
627 |
choices=list(MODULE_DESCRIPTIONS.keys()),
|
628 |
value="run_terminal_zh",
|
629 |
label="选择功能模块",
|
630 |
-
interactive=True
|
631 |
)
|
632 |
-
|
633 |
# 模块描述文本框
|
634 |
module_description = gr.Textbox(
|
635 |
value=MODULE_DESCRIPTIONS["run_terminal_zh"],
|
636 |
label="模块描述",
|
637 |
interactive=False,
|
638 |
-
elem_classes="module-info"
|
639 |
)
|
640 |
-
|
641 |
-
run_button = gr.Button(
|
642 |
-
|
|
|
|
|
643 |
with gr.Column(scale=1):
|
644 |
gr.Markdown("""
|
645 |
### 使用指南
|
@@ -651,127 +663,103 @@ def create_ui():
|
|
651 |
|
652 |
> **高级提示**: 对于复杂任务,可以尝试指定具体步骤和预期结果
|
653 |
""")
|
654 |
-
|
655 |
status_output = gr.Textbox(label="状态", interactive=False)
|
656 |
-
|
657 |
with gr.Tabs():
|
658 |
with gr.TabItem("回答"):
|
659 |
answer_output = gr.Textbox(
|
660 |
-
label="回答",
|
661 |
-
lines=10,
|
662 |
-
elem_classes="answer-box"
|
663 |
)
|
664 |
-
|
665 |
with gr.TabItem("对话历史"):
|
666 |
chat_output = gr.Chatbot(
|
667 |
-
label="完整对话记录",
|
668 |
-
elem_classes="chat-container",
|
669 |
-
height=500
|
670 |
)
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
token_count_output = gr.Textbox(
|
675 |
-
label="令牌计数",
|
676 |
-
interactive=False,
|
677 |
-
elem_classes="token-count"
|
678 |
)
|
679 |
-
|
680 |
# 示例问题
|
681 |
examples = [
|
682 |
"打开百度搜索,总结一下camel-ai的camel框架的github star、fork数目等,并把数字用plot包写成python文件保存到本地,用本地终端执行python文件显示图出来给我",
|
683 |
"请分析GitHub上CAMEL-AI项目的最新统计数据。找出该项目的星标数量、贡献者数量和最近的活跃度。",
|
684 |
"浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格",
|
685 |
"写一个hello world的python文件,保存到本地",
|
686 |
-
|
687 |
]
|
688 |
-
|
689 |
-
gr.Examples(
|
690 |
-
examples=examples,
|
691 |
-
inputs=question_input
|
692 |
-
)
|
693 |
# 新增: 环境变量管理选项卡
|
694 |
with gr.TabItem("环境变量管理", id="env-settings"):
|
695 |
-
|
696 |
## 环境变量管理
|
697 |
|
698 |
在此处设置模型API密钥和其他服务凭证。这些信息将保存在本地的`.env`文件中,确保您的API密钥安全存储且不会上传到网络。
|
699 |
""")
|
700 |
-
|
701 |
-
# 环境变量表格
|
702 |
-
env_table = gr.Dataframe(
|
703 |
-
headers=["变量名", "值"],
|
704 |
-
datatype=["str", "str"],
|
705 |
-
row_count=10,
|
706 |
-
col_count=(2, "fixed"),
|
707 |
-
value=update_env_table,
|
708 |
-
label="当前环境变量",
|
709 |
-
interactive=False
|
710 |
-
)
|
711 |
-
|
712 |
-
with gr.Row():
|
713 |
-
with gr.Column(scale=1):
|
714 |
-
new_env_key = gr.Textbox(label="变量名", placeholder="例如: OPENAI_API_KEY")
|
715 |
-
with gr.Column(scale=2):
|
716 |
-
new_env_value = gr.Textbox(label="值", placeholder="输入API密钥或其他配置值")
|
717 |
-
|
718 |
-
with gr.Row():
|
719 |
-
add_env_button = gr.Button("添加/更新变量", variant="primary")
|
720 |
-
refresh_button = gr.Button("刷新变量列表")
|
721 |
-
delete_env_button = gr.Button("删除选定变量", variant="stop")
|
722 |
-
|
723 |
-
env_status = gr.Textbox(label="状态", interactive=False)
|
724 |
-
|
725 |
-
# 变量选择器(用于删除)
|
726 |
-
env_var_to_delete = gr.Dropdown(
|
727 |
-
choices=[],
|
728 |
-
label="选择要删除的变量",
|
729 |
-
interactive=True
|
730 |
-
)
|
731 |
-
|
732 |
-
# 更新变量选择器的选项
|
733 |
-
def update_delete_dropdown():
|
734 |
-
env_vars = load_env_vars()
|
735 |
-
return gr.Dropdown.update(choices=list(env_vars.keys()))
|
736 |
-
|
737 |
-
# 连接事件处理函数
|
738 |
-
add_env_button.click(
|
739 |
-
fn=lambda k, v: add_env_var(k, v),
|
740 |
-
inputs=[new_env_key, new_env_value],
|
741 |
-
outputs=[env_status]
|
742 |
-
).then(
|
743 |
-
fn=update_env_table,
|
744 |
-
outputs=[env_table]
|
745 |
-
).then(
|
746 |
-
fn=update_delete_dropdown,
|
747 |
-
outputs=[env_var_to_delete]
|
748 |
-
).then(
|
749 |
-
fn=lambda: ("", ""), # 修改为返回两个空字符串的元组
|
750 |
-
outputs=[new_env_key, new_env_value]
|
751 |
-
)
|
752 |
-
|
753 |
-
refresh_button.click(
|
754 |
-
fn=update_env_table,
|
755 |
-
outputs=[env_table]
|
756 |
-
).then(
|
757 |
-
fn=update_delete_dropdown,
|
758 |
-
outputs=[env_var_to_delete]
|
759 |
-
)
|
760 |
-
|
761 |
-
delete_env_button.click(
|
762 |
-
fn=lambda k: delete_env_var(k),
|
763 |
-
inputs=[env_var_to_delete],
|
764 |
-
outputs=[env_status]
|
765 |
-
).then(
|
766 |
-
fn=update_env_table,
|
767 |
-
outputs=[env_table]
|
768 |
-
).then(
|
769 |
-
fn=update_delete_dropdown,
|
770 |
-
outputs=[env_var_to_delete]
|
771 |
-
)
|
772 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
773 |
|
774 |
-
|
775 |
gr.HTML("""
|
776 |
<div class="footer" id="about">
|
777 |
<h3>关于 OWL 多智能体协作系统</h3>
|
@@ -780,23 +768,24 @@ def create_ui():
|
|
780 |
<p><a href="https://github.com/camel-ai/owl" target="_blank">GitHub</a></p>
|
781 |
</div>
|
782 |
""")
|
783 |
-
|
784 |
# 设置事件处理
|
785 |
run_button.click(
|
786 |
fn=run_owl,
|
787 |
-
inputs=[question_input, module_dropdown],
|
788 |
-
outputs=[answer_output, chat_output, token_count_output, status_output]
|
789 |
)
|
790 |
-
|
791 |
# 模块选择更新描述
|
792 |
module_dropdown.change(
|
793 |
fn=update_module_description,
|
794 |
inputs=module_dropdown,
|
795 |
-
outputs=module_description
|
796 |
)
|
797 |
-
|
798 |
return app
|
799 |
|
|
|
800 |
# 主函数
|
801 |
def main():
|
802 |
try:
|
@@ -807,7 +796,9 @@ def main():
|
|
807 |
except Exception as e:
|
808 |
print(f"启动应用程序时发生错误: {str(e)}")
|
809 |
import traceback
|
|
|
810 |
traceback.print_exc()
|
811 |
|
|
|
812 |
if __name__ == "__main__":
|
813 |
-
main()
|
|
|
1 |
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
# Unless required by applicable law or agreed to in writing, software
|
9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11 |
+
# See the License for the specific language governing permissions and
|
12 |
+
# limitations under the License.
|
13 |
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
14 |
# Import from the correct module path
|
15 |
from owl.utils import run_society
|
16 |
import os
|
17 |
import gradio as gr
|
18 |
+
from typing import Tuple, List, Dict
|
|
|
|
|
19 |
import importlib
|
20 |
from dotenv import load_dotenv, set_key, find_dotenv, unset_key
|
21 |
|
22 |
+
os.environ["PYTHONIOENCODING"] = "utf-8"
|
23 |
|
24 |
# Enhanced CSS with navigation bar and additional styling
|
25 |
custom_css = """
|
|
|
261 |
# Dictionary containing module descriptions
|
262 |
MODULE_DESCRIPTIONS = {
|
263 |
"run": "默认模式:使用OpenAI模型的默认的智能体协作模式,适合大多数任务。",
|
264 |
+
"run_mini": "使用使用OpenAI模型最小化配置处理任务",
|
265 |
+
"run_deepseek_zh": "使用deepseek模型处理中文任务",
|
266 |
"run_terminal_zh": "终端模式:可执行命令行操作,支持网络搜索、文件处理等功能。适合需要系统交互的任务,使用OpenAI模型",
|
267 |
+
"run_gaia_roleplaying": "GAIA基准测试实现,用于评估Agent能力",
|
268 |
+
"run_openai_compatiable_model": "使用openai兼容模型处理任务",
|
269 |
+
"run_ollama": "使用本地ollama模型处理任务",
|
270 |
+
"run_qwen_mini_zh": "使用qwen模型最小化配置处理任务",
|
271 |
+
"run_qwen_zh": "使用qwen模型处理任务",
|
272 |
}
|
273 |
|
274 |
# 默认环境变量模板
|
|
|
303 |
#FIRECRAWL_API_URL="https://api.firecrawl.dev"
|
304 |
"""
|
305 |
|
306 |
+
|
307 |
def format_chat_history(chat_history: List[Dict[str, str]]) -> List[List[str]]:
|
308 |
"""将聊天历史格式化为Gradio聊天组件可接受的格式
|
309 |
+
|
310 |
Args:
|
311 |
chat_history: 原始聊天历史
|
312 |
+
|
313 |
Returns:
|
314 |
List[List[str]]: 格式化后的聊天历史
|
315 |
"""
|
|
|
317 |
for message in chat_history:
|
318 |
user_msg = message.get("user", "")
|
319 |
assistant_msg = message.get("assistant", "")
|
320 |
+
|
321 |
if user_msg:
|
322 |
formatted_history.append([user_msg, None])
|
323 |
if assistant_msg and formatted_history:
|
324 |
formatted_history[-1][1] = assistant_msg
|
325 |
elif assistant_msg:
|
326 |
formatted_history.append([None, assistant_msg])
|
327 |
+
|
328 |
return formatted_history
|
329 |
|
330 |
+
|
331 |
def validate_input(question: str) -> bool:
|
332 |
"""验证用户输入是否有效
|
333 |
+
|
334 |
Args:
|
335 |
question: 用户问题
|
336 |
+
|
337 |
Returns:
|
338 |
bool: 输入是否有效
|
339 |
"""
|
|
|
342 |
return False
|
343 |
return True
|
344 |
|
345 |
+
|
346 |
+
def run_owl(
|
347 |
+
question: str, example_module: str
|
348 |
+
) -> Tuple[str, List[List[str]], str, str]:
|
349 |
"""运行OWL系统并返回结果
|
350 |
+
|
351 |
Args:
|
352 |
question: 用户问题
|
353 |
example_module: 要导入的示例模块名(如 "run_terminal_zh" 或 "run_deep")
|
354 |
+
|
355 |
Returns:
|
356 |
Tuple[...]: 回答、聊天历史、令牌计数、状态
|
357 |
"""
|
358 |
# 验证输入
|
359 |
if not validate_input(question):
|
360 |
+
return ("请输入有效的问题", [], "0", "❌ 错误: 输入无效")
|
361 |
+
|
|
|
|
|
|
|
|
|
|
|
362 |
try:
|
363 |
# 确保环境变量已加载
|
364 |
load_dotenv(find_dotenv(), override=True)
|
365 |
# 检查模块是否在MODULE_DESCRIPTIONS中
|
366 |
if example_module not in MODULE_DESCRIPTIONS:
|
367 |
return (
|
368 |
+
f"所选模块 '{example_module}' 不受支持",
|
369 |
+
[],
|
370 |
+
"0",
|
371 |
+
"❌ 错误: 不支持的模块",
|
372 |
)
|
373 |
+
|
374 |
# 动态导入目标模块
|
375 |
module_path = f"owl.examples.{example_module}"
|
376 |
try:
|
377 |
module = importlib.import_module(module_path)
|
378 |
except ImportError as ie:
|
379 |
return (
|
380 |
+
f"无法导入模块: {module_path}",
|
381 |
+
[],
|
382 |
+
"0",
|
383 |
+
f"❌ 错误: 模块 {example_module} 不存在或无法加载 - {str(ie)}",
|
384 |
)
|
385 |
except Exception as e:
|
386 |
+
return (f"导入模块时发生错误: {module_path}", [], "0", f"❌ 错误: {str(e)}")
|
387 |
+
|
|
|
|
|
|
|
|
|
|
|
388 |
# 检查是否包含construct_society函数
|
389 |
if not hasattr(module, "construct_society"):
|
390 |
return (
|
391 |
+
f"模块 {module_path} 中未找到 construct_society 函数",
|
392 |
+
[],
|
393 |
+
"0",
|
394 |
+
"❌ 错误: 模块接口不兼容",
|
395 |
)
|
396 |
+
|
397 |
# 构建社会模拟
|
398 |
try:
|
399 |
society = module.construct_society(question)
|
400 |
except Exception as e:
|
401 |
return (
|
402 |
+
f"构建社会模拟时发生错误: {str(e)}",
|
403 |
+
[],
|
404 |
+
"0",
|
405 |
+
f"❌ 错误: 构建失败 - {str(e)}",
|
406 |
)
|
407 |
+
|
408 |
# 运行社会模拟
|
409 |
try:
|
410 |
answer, chat_history, token_info = run_society(society)
|
411 |
except Exception as e:
|
412 |
return (
|
413 |
+
f"运行社会模拟时发生错误: {str(e)}",
|
414 |
+
[],
|
415 |
+
"0",
|
416 |
+
f"❌ 错误: 运行失败 - {str(e)}",
|
417 |
)
|
418 |
+
|
419 |
# 格式化聊天历史
|
420 |
try:
|
421 |
formatted_chat_history = format_chat_history(chat_history)
|
422 |
+
except Exception:
|
423 |
# 如果格式化失败,返回空历史记录但继续处理
|
424 |
formatted_chat_history = []
|
425 |
+
|
426 |
# 安全地获取令牌计数
|
427 |
if not isinstance(token_info, dict):
|
428 |
token_info = {}
|
429 |
+
|
430 |
completion_tokens = token_info.get("completion_token_count", 0)
|
431 |
prompt_tokens = token_info.get("prompt_token_count", 0)
|
432 |
total_tokens = completion_tokens + prompt_tokens
|
433 |
+
|
434 |
return (
|
435 |
+
answer,
|
436 |
+
formatted_chat_history,
|
437 |
+
f"完成令牌: {completion_tokens:,} | 提示令牌: {prompt_tokens:,} | 总计: {total_tokens:,}",
|
438 |
+
"✅ 成功完成",
|
439 |
)
|
440 |
+
|
441 |
except Exception as e:
|
442 |
+
return (f"发生错误: {str(e)}", [], "0", f"❌ 错误: {str(e)}")
|
443 |
+
|
|
|
|
|
|
|
|
|
444 |
|
445 |
def update_module_description(module_name: str) -> str:
|
446 |
"""返回所选模块的描述"""
|
447 |
return MODULE_DESCRIPTIONS.get(module_name, "无可用描述")
|
448 |
|
449 |
+
|
450 |
# 环境变量管理功能
|
451 |
def init_env_file():
|
452 |
"""初始化.env文件如果不存在"""
|
|
|
457 |
dotenv_path = find_dotenv()
|
458 |
return dotenv_path
|
459 |
|
460 |
+
|
461 |
def load_env_vars():
|
462 |
"""加载环境变量并返回字典格式"""
|
463 |
dotenv_path = init_env_file()
|
464 |
load_dotenv(dotenv_path, override=True)
|
465 |
+
|
466 |
env_vars = {}
|
467 |
with open(dotenv_path, "r") as f:
|
468 |
for line in f:
|
|
|
470 |
if line and not line.startswith("#"):
|
471 |
if "=" in line:
|
472 |
key, value = line.split("=", 1)
|
473 |
+
env_vars[key.strip()] = value.strip().strip("\"'")
|
474 |
+
|
475 |
return env_vars
|
476 |
|
477 |
+
|
478 |
def save_env_vars(env_vars):
|
479 |
"""保存环境变量到.env文件"""
|
480 |
try:
|
481 |
dotenv_path = init_env_file()
|
482 |
+
|
483 |
# 保存每个环境变量
|
484 |
for key, value in env_vars.items():
|
485 |
if key and key.strip(): # 确保键不为空
|
486 |
set_key(dotenv_path, key.strip(), value.strip())
|
487 |
+
|
488 |
# 重新加载环境变量以确保生效
|
489 |
load_dotenv(dotenv_path, override=True)
|
490 |
+
|
491 |
return True, "环境变量已成功保存!"
|
492 |
except Exception as e:
|
493 |
return False, f"保存环境变量时出错: {str(e)}"
|
494 |
|
495 |
+
|
496 |
def add_env_var(key, value):
|
497 |
"""添加或更新单个环境变量"""
|
498 |
try:
|
499 |
if not key or not key.strip():
|
500 |
return False, "变量名不能为空"
|
501 |
+
|
502 |
dotenv_path = init_env_file()
|
503 |
set_key(dotenv_path, key.strip(), value.strip())
|
504 |
load_dotenv(dotenv_path, override=True)
|
505 |
+
|
506 |
return True, f"环境变量 {key} 已成功添加/更新!"
|
507 |
except Exception as e:
|
508 |
return False, f"添加环境变量时出错: {str(e)}"
|
509 |
|
510 |
+
|
511 |
def delete_env_var(key):
|
512 |
"""删除环境变量"""
|
513 |
try:
|
514 |
if not key or not key.strip():
|
515 |
return False, "变量名不能为空"
|
516 |
+
|
517 |
dotenv_path = init_env_file()
|
518 |
unset_key(dotenv_path, key.strip())
|
519 |
+
|
520 |
# 从当前进程环境中也删除
|
521 |
if key in os.environ:
|
522 |
del os.environ[key]
|
523 |
+
|
524 |
return True, f"环境变量 {key} 已成功删除!"
|
525 |
except Exception as e:
|
526 |
return False, f"删除环境变量时出错: {str(e)}"
|
527 |
|
528 |
+
|
529 |
def mask_sensitive_value(key: str, value: str) -> str:
|
530 |
"""对敏感信息进行掩码处理
|
531 |
+
|
532 |
Args:
|
533 |
key: 环境变量名
|
534 |
value: 环境变量值
|
535 |
+
|
536 |
Returns:
|
537 |
str: 处理后的值
|
538 |
"""
|
539 |
# 定义需要掩码的敏感关键词
|
540 |
+
sensitive_keywords = ["key", "token", "secret", "password", "api"]
|
541 |
+
|
542 |
# 检查是否包含敏感关键词(不区分大小写)
|
543 |
is_sensitive = any(keyword in key.lower() for keyword in sensitive_keywords)
|
544 |
+
|
545 |
if is_sensitive and value:
|
546 |
# 如果是敏感信息且有值,则显示掩码
|
547 |
+
return "*" * 8
|
548 |
return value
|
549 |
|
550 |
+
|
551 |
def update_env_table():
|
552 |
"""更新环境变量表格显示,对敏感信息进行掩码处理"""
|
553 |
env_vars = load_env_vars()
|
|
|
555 |
masked_env_vars = [[k, mask_sensitive_value(k, v)] for k, v in env_vars.items()]
|
556 |
return masked_env_vars
|
557 |
|
558 |
+
|
559 |
def create_ui():
|
560 |
"""创建增强版Gradio界面"""
|
561 |
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(primary_hue="blue")) as app:
|
|
|
579 |
<p>我们的愿景是彻底改变AI代理协作解决现实世界任务的方式。通过利用动态代理交互,OWL能够在多个领域实现更自然、高效和稳健的任务自动化。</p>
|
580 |
</div>
|
581 |
""")
|
582 |
+
|
583 |
with gr.Row(elem_id="features"):
|
584 |
gr.HTML("""
|
585 |
<div class="features-section">
|
|
|
620 |
</div>
|
621 |
</div>
|
622 |
""")
|
623 |
+
|
624 |
with gr.Row():
|
625 |
with gr.Column(scale=2):
|
626 |
question_input = gr.Textbox(
|
|
|
630 |
elem_id="question_input",
|
631 |
show_copy_button=True,
|
632 |
)
|
633 |
+
|
634 |
# 增强版模块选择下拉菜单
|
635 |
# 只包含MODULE_DESCRIPTIONS中定义的模块
|
636 |
module_dropdown = gr.Dropdown(
|
637 |
choices=list(MODULE_DESCRIPTIONS.keys()),
|
638 |
value="run_terminal_zh",
|
639 |
label="选择功能模块",
|
640 |
+
interactive=True,
|
641 |
)
|
642 |
+
|
643 |
# 模块描述文本框
|
644 |
module_description = gr.Textbox(
|
645 |
value=MODULE_DESCRIPTIONS["run_terminal_zh"],
|
646 |
label="模块描述",
|
647 |
interactive=False,
|
648 |
+
elem_classes="module-info",
|
649 |
)
|
650 |
+
|
651 |
+
run_button = gr.Button(
|
652 |
+
"运行", variant="primary", elem_classes="primary"
|
653 |
+
)
|
654 |
+
|
655 |
with gr.Column(scale=1):
|
656 |
gr.Markdown("""
|
657 |
### 使用指南
|
|
|
663 |
|
664 |
> **高级提示**: 对于复杂任务,可以尝试指定具体步骤和预期结果
|
665 |
""")
|
666 |
+
|
667 |
status_output = gr.Textbox(label="状态", interactive=False)
|
668 |
+
|
669 |
with gr.Tabs():
|
670 |
with gr.TabItem("回答"):
|
671 |
answer_output = gr.Textbox(
|
672 |
+
label="回答", lines=10, elem_classes="answer-box"
|
|
|
|
|
673 |
)
|
674 |
+
|
675 |
with gr.TabItem("对话历史"):
|
676 |
chat_output = gr.Chatbot(
|
677 |
+
label="完整对话记录", elem_classes="chat-container", height=500
|
|
|
|
|
678 |
)
|
679 |
+
|
|
|
|
|
680 |
token_count_output = gr.Textbox(
|
681 |
+
label="令牌计数", interactive=False, elem_classes="token-count"
|
|
|
|
|
682 |
)
|
683 |
+
|
684 |
# 示例问题
|
685 |
examples = [
|
686 |
"打开百度搜索,总结一下camel-ai的camel框架的github star、fork数目等,并把数字用plot包写成python文件保存到本地,用本地终端执行python文件显示图出来给我",
|
687 |
"请分析GitHub上CAMEL-AI项目的最新统计数据。找出该项目的星标数量、贡献者数量和最近的活跃度。",
|
688 |
"浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格",
|
689 |
"写一个hello world的python文件,保存到本地",
|
|
|
690 |
]
|
691 |
+
|
692 |
+
gr.Examples(examples=examples, inputs=question_input)
|
|
|
|
|
|
|
693 |
# 新增: 环境变量管理选项卡
|
694 |
with gr.TabItem("环境变量管理", id="env-settings"):
|
695 |
+
gr.Markdown("""
|
696 |
## 环境变量管理
|
697 |
|
698 |
在此处设置模型API密钥和其他服务凭证。这些信息将保存在本地的`.env`文件中,确保您的API密钥安全存储且不会上传到网络。
|
699 |
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
700 |
|
701 |
+
# 环境变量表格
|
702 |
+
env_table = gr.Dataframe(
|
703 |
+
headers=["变量名", "值"],
|
704 |
+
datatype=["str", "str"],
|
705 |
+
row_count=10,
|
706 |
+
col_count=(2, "fixed"),
|
707 |
+
value=update_env_table,
|
708 |
+
label="当前环境变量",
|
709 |
+
interactive=False,
|
710 |
+
)
|
711 |
+
|
712 |
+
with gr.Row():
|
713 |
+
with gr.Column(scale=1):
|
714 |
+
new_env_key = gr.Textbox(
|
715 |
+
label="变量名", placeholder="例如: OPENAI_API_KEY"
|
716 |
+
)
|
717 |
+
with gr.Column(scale=2):
|
718 |
+
new_env_value = gr.Textbox(
|
719 |
+
label="值", placeholder="输入API密钥或其他配置值"
|
720 |
+
)
|
721 |
+
|
722 |
+
with gr.Row():
|
723 |
+
add_env_button = gr.Button("添加/更新变量", variant="primary")
|
724 |
+
refresh_button = gr.Button("刷新变量列表")
|
725 |
+
delete_env_button = gr.Button("删除选定变量", variant="stop")
|
726 |
+
|
727 |
+
env_status = gr.Textbox(label="状态", interactive=False)
|
728 |
+
|
729 |
+
# 变量选择器(用于删除)
|
730 |
+
env_var_to_delete = gr.Dropdown(
|
731 |
+
choices=[], label="选择要删除的变量", interactive=True
|
732 |
+
)
|
733 |
+
|
734 |
+
# 更新变量选择器的选项
|
735 |
+
def update_delete_dropdown():
|
736 |
+
env_vars = load_env_vars()
|
737 |
+
return gr.Dropdown.update(choices=list(env_vars.keys()))
|
738 |
+
|
739 |
+
# 连接事件处理函数
|
740 |
+
add_env_button.click(
|
741 |
+
fn=lambda k, v: add_env_var(k, v),
|
742 |
+
inputs=[new_env_key, new_env_value],
|
743 |
+
outputs=[env_status],
|
744 |
+
).then(fn=update_env_table, outputs=[env_table]).then(
|
745 |
+
fn=update_delete_dropdown, outputs=[env_var_to_delete]
|
746 |
+
).then(
|
747 |
+
fn=lambda: ("", ""), # 修改为返回两个空字符串的元组
|
748 |
+
outputs=[new_env_key, new_env_value],
|
749 |
+
)
|
750 |
+
|
751 |
+
refresh_button.click(fn=update_env_table, outputs=[env_table]).then(
|
752 |
+
fn=update_delete_dropdown, outputs=[env_var_to_delete]
|
753 |
+
)
|
754 |
+
|
755 |
+
delete_env_button.click(
|
756 |
+
fn=lambda k: delete_env_var(k),
|
757 |
+
inputs=[env_var_to_delete],
|
758 |
+
outputs=[env_status],
|
759 |
+
).then(fn=update_env_table, outputs=[env_table]).then(
|
760 |
+
fn=update_delete_dropdown, outputs=[env_var_to_delete]
|
761 |
+
)
|
762 |
|
|
|
763 |
gr.HTML("""
|
764 |
<div class="footer" id="about">
|
765 |
<h3>关于 OWL 多智能体协作系统</h3>
|
|
|
768 |
<p><a href="https://github.com/camel-ai/owl" target="_blank">GitHub</a></p>
|
769 |
</div>
|
770 |
""")
|
771 |
+
|
772 |
# 设置事件处理
|
773 |
run_button.click(
|
774 |
fn=run_owl,
|
775 |
+
inputs=[question_input, module_dropdown],
|
776 |
+
outputs=[answer_output, chat_output, token_count_output, status_output],
|
777 |
)
|
778 |
+
|
779 |
# 模块选择更新描述
|
780 |
module_dropdown.change(
|
781 |
fn=update_module_description,
|
782 |
inputs=module_dropdown,
|
783 |
+
outputs=module_description,
|
784 |
)
|
785 |
+
|
786 |
return app
|
787 |
|
788 |
+
|
789 |
# 主函数
|
790 |
def main():
|
791 |
try:
|
|
|
796 |
except Exception as e:
|
797 |
print(f"启动应用程序时发生错误: {str(e)}")
|
798 |
import traceback
|
799 |
+
|
800 |
traceback.print_exc()
|
801 |
|
802 |
+
|
803 |
if __name__ == "__main__":
|
804 |
+
main()
|
owl/utils/enhanced_role_playing.py
CHANGED
@@ -381,6 +381,12 @@ Now please give me instructions to solve over overall task step by step. If the
|
|
381 |
"""
|
382 |
input_msg = society.init_chat(init_prompt)
|
383 |
for _round in range(round_limit):
|
|
|
|
|
|
|
|
|
|
|
|
|
384 |
assistant_response, user_response = society.step(input_msg)
|
385 |
overall_completion_token_count += (
|
386 |
assistant_response.info["usage"]["completion_tokens"]
|
@@ -408,10 +414,12 @@ Now please give me instructions to solve over overall task step by step. If the
|
|
408 |
f"Round #{_round} assistant_response:\n {assistant_response.msgs[0].content}"
|
409 |
)
|
410 |
|
|
|
411 |
if (
|
412 |
assistant_response.terminated
|
413 |
or user_response.terminated
|
414 |
or "TASK_DONE" in user_response.msg.content
|
|
|
415 |
):
|
416 |
break
|
417 |
|
|
|
381 |
"""
|
382 |
input_msg = society.init_chat(init_prompt)
|
383 |
for _round in range(round_limit):
|
384 |
+
# Check if previous user response had TASK_DONE before getting next assistant response
|
385 |
+
if _round > 0 and (
|
386 |
+
"TASK_DONE" in input_msg.content or "任务已完成" in input_msg.content
|
387 |
+
):
|
388 |
+
break
|
389 |
+
|
390 |
assistant_response, user_response = society.step(input_msg)
|
391 |
overall_completion_token_count += (
|
392 |
assistant_response.info["usage"]["completion_tokens"]
|
|
|
414 |
f"Round #{_round} assistant_response:\n {assistant_response.msgs[0].content}"
|
415 |
)
|
416 |
|
417 |
+
# Check other termination conditions
|
418 |
if (
|
419 |
assistant_response.terminated
|
420 |
or user_response.terminated
|
421 |
or "TASK_DONE" in user_response.msg.content
|
422 |
+
or "任务已完成" in user_response.msg.content
|
423 |
):
|
424 |
break
|
425 |
|
owl/webapp_zh.py
CHANGED
@@ -1,3 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Import from the correct module path
|
2 |
from owl.utils import run_society
|
3 |
import os
|
@@ -6,19 +19,15 @@ import time
|
|
6 |
import json
|
7 |
import logging
|
8 |
import datetime
|
9 |
-
from typing import Tuple
|
10 |
import importlib
|
11 |
from dotenv import load_dotenv, set_key, find_dotenv, unset_key
|
12 |
import threading
|
13 |
import queue
|
14 |
-
import
|
15 |
-
|
16 |
-
|
17 |
-
import subprocess
|
18 |
-
import platform
|
19 |
-
import re
|
20 |
|
21 |
-
os.environ['PYTHONIOENCODING'] = 'utf-8'
|
22 |
|
23 |
# 配置日志系统
|
24 |
def setup_logging():
|
@@ -26,94 +35,112 @@ def setup_logging():
|
|
26 |
# 创建logs目录(如果不存在)
|
27 |
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
|
28 |
os.makedirs(logs_dir, exist_ok=True)
|
29 |
-
|
30 |
# 生成日志文件名(使用当前日期)
|
31 |
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
32 |
log_file = os.path.join(logs_dir, f"gradio_log_{current_date}.txt")
|
33 |
-
|
34 |
# 配置根日志记录器(捕获所有日志)
|
35 |
root_logger = logging.getLogger()
|
36 |
-
|
37 |
# 清除现有的处理器,避免重复日志
|
38 |
for handler in root_logger.handlers[:]:
|
39 |
root_logger.removeHandler(handler)
|
40 |
-
|
41 |
root_logger.setLevel(logging.INFO)
|
42 |
-
|
43 |
# 创建文件处理器
|
44 |
-
file_handler = logging.FileHandler(log_file, encoding=
|
45 |
file_handler.setLevel(logging.INFO)
|
46 |
-
|
47 |
# 创建控制台处理器
|
48 |
console_handler = logging.StreamHandler()
|
49 |
console_handler.setLevel(logging.INFO)
|
50 |
-
|
51 |
# 创建格式化器
|
52 |
-
formatter = logging.Formatter(
|
|
|
|
|
53 |
file_handler.setFormatter(formatter)
|
54 |
console_handler.setFormatter(formatter)
|
55 |
-
|
56 |
# 添加处理器到根日志记录器
|
57 |
root_logger.addHandler(file_handler)
|
58 |
root_logger.addHandler(console_handler)
|
59 |
-
|
60 |
logging.info("日志系统已初始化,日志文件: %s", log_file)
|
61 |
return log_file
|
62 |
|
|
|
63 |
# 全局变量
|
64 |
LOG_FILE = None
|
65 |
-
LOG_QUEUE = queue.Queue()
|
66 |
-
LOG_QUEUE2 = queue.Queue() # 对话记录的队列
|
67 |
STOP_LOG_THREAD = threading.Event()
|
68 |
CURRENT_PROCESS = None # 用于跟踪当前运行的进程
|
69 |
STOP_REQUESTED = threading.Event() # 用于标记是否请求停止
|
70 |
|
|
|
71 |
# 日志读取和更新函数
|
72 |
def log_reader_thread(log_file):
|
73 |
"""后台线程,持续读取日志文件并将新行添加到队列中"""
|
74 |
try:
|
75 |
-
with open(log_file,
|
76 |
# 移动到文件末尾
|
77 |
f.seek(0, 2)
|
78 |
-
|
79 |
while not STOP_LOG_THREAD.is_set():
|
80 |
line = f.readline()
|
81 |
if line:
|
82 |
-
LOG_QUEUE.put(line)
|
83 |
-
LOG_QUEUE2.put(line) # 同时添加到第二个队列
|
84 |
else:
|
85 |
# 没有新行,等待一小段时间
|
86 |
time.sleep(0.1)
|
87 |
except Exception as e:
|
88 |
logging.error(f"日志读取线程出错: {str(e)}")
|
89 |
|
|
|
90 |
def get_latest_logs(max_lines=100, queue_source=None):
|
91 |
"""从队列中获取最新的日志行,如果队列为空则直接从文件读取
|
92 |
-
|
93 |
Args:
|
94 |
max_lines: 最大返回行数
|
95 |
queue_source: 指定使用哪个队列,默认为LOG_QUEUE
|
96 |
-
|
97 |
Returns:
|
98 |
str: 日志内容
|
99 |
"""
|
100 |
logs = []
|
101 |
log_queue = queue_source if queue_source else LOG_QUEUE
|
|
|
|
|
|
|
|
|
|
|
102 |
try:
|
103 |
# 尝试从队列中获取所有可用的日志行
|
104 |
-
while not log_queue.empty() and len(
|
105 |
-
|
|
|
|
|
106 |
except queue.Empty:
|
107 |
pass
|
108 |
-
|
|
|
|
|
|
|
109 |
# 如果没有新日志或日志不足,尝试直接从文件读取最后几行
|
110 |
if len(logs) < max_lines and LOG_FILE and os.path.exists(LOG_FILE):
|
111 |
try:
|
112 |
-
with open(LOG_FILE,
|
113 |
all_lines = f.readlines()
|
114 |
# 如果队列中已有一些日志,只读取剩余需要的行数
|
115 |
remaining_lines = max_lines - len(logs)
|
116 |
-
file_logs =
|
|
|
|
|
|
|
|
|
|
|
117 |
# 将文件日志添加到队列日志之前
|
118 |
logs = file_logs + logs
|
119 |
except Exception as e:
|
@@ -121,51 +148,106 @@ def get_latest_logs(max_lines=100, queue_source=None):
|
|
121 |
logging.error(error_msg)
|
122 |
if not logs: # 只有在没有任何日志的情况下才添加错误消息
|
123 |
logs = [error_msg]
|
124 |
-
|
125 |
# 如果仍然没有日志,返回提示信息
|
126 |
if not logs:
|
127 |
-
return "
|
128 |
-
|
129 |
-
#
|
130 |
-
|
131 |
for log in logs:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
132 |
# 移除开头和结尾的多余空白字符
|
133 |
log = log.strip()
|
134 |
-
|
135 |
-
# 处理包含JSON或代码片段的日志,确保它们有正确的换行和缩进
|
136 |
-
if '"]"\n}' in log or '\n}\n\n' in log:
|
137 |
-
# 替换不合理的换行为更清晰的格式
|
138 |
-
log = log.replace('"]"\n}', '"]" }').replace('\n}\n\n', ' }\n')
|
139 |
-
|
140 |
-
# 检测日期时间格式的开头,这通常表示一个新的日志条目
|
141 |
-
# 例如:2025-03-14 18:49:31,008 - httpx - INFO
|
142 |
-
if re.match(r'^\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d{3}', log):
|
143 |
-
# 在新的日志条目前添加一个空行,使日志更易读
|
144 |
-
formatted_logs.append('\n')
|
145 |
-
|
146 |
-
# 确保每个日志条目以换行符结束
|
147 |
-
if not log.endswith('\n'):
|
148 |
-
log += '\n'
|
149 |
-
|
150 |
formatted_logs.append(log)
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
return "".join(formatted_logs)
|
157 |
|
|
|
158 |
# Dictionary containing module descriptions
|
159 |
MODULE_DESCRIPTIONS = {
|
160 |
"run": "默认模式:使用OpenAI模型的默认的智能体协作模式,适合大多数任务。",
|
161 |
-
"run_mini":"使用使用OpenAI模型最小化配置处理任务",
|
162 |
-
"run_deepseek_zh":"使用deepseek模型处理中文任务",
|
163 |
"run_terminal_zh": "终端模式:可执行命令行操作,支持网络搜索、文件处理等功能。适合需要系统交互的任务,使用OpenAI模型",
|
164 |
-
"run_gaia_roleplaying":"GAIA基准测试实现,用于评估Agent能力",
|
165 |
-
"run_openai_compatiable_model":"使用openai兼容模型处理任务",
|
166 |
-
"run_ollama":"使用本地ollama模型处理任务",
|
167 |
-
"run_qwen_mini_zh":"使用qwen模型最小化配置处理任务",
|
168 |
-
"run_qwen_zh":"使用qwen模型处理任务",
|
169 |
}
|
170 |
|
171 |
# API帮助信息
|
@@ -173,43 +255,43 @@ API_HELP_INFO = {
|
|
173 |
"OPENAI_API_KEY": {
|
174 |
"name": "OpenAI API",
|
175 |
"desc": "OpenAI API密钥,用于访问GPT系列模型",
|
176 |
-
"url": "https://platform.openai.com/api-keys"
|
177 |
},
|
178 |
"QWEN_API_KEY": {
|
179 |
"name": "通义千问 API",
|
180 |
"desc": "阿里云通义千问API密钥",
|
181 |
-
"url": "https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key"
|
182 |
},
|
183 |
"DEEPSEEK_API_KEY": {
|
184 |
"name": "DeepSeek API",
|
185 |
"desc": "DeepSeek API密钥",
|
186 |
-
"url": "https://platform.deepseek.com/api_keys"
|
187 |
},
|
188 |
"GOOGLE_API_KEY": {
|
189 |
"name": "Google Search API",
|
190 |
"desc": "Google自定义搜索API密钥",
|
191 |
-
"url": "https://developers.google.com/custom-search/v1/overview"
|
192 |
},
|
193 |
"SEARCH_ENGINE_ID": {
|
194 |
"name": "Google Search Engine ID",
|
195 |
"desc": "Google自定义搜索引擎ID",
|
196 |
-
"url": "https://developers.google.com/custom-search/v1/overview"
|
197 |
},
|
198 |
"HF_TOKEN": {
|
199 |
"name": "Hugging Face API",
|
200 |
"desc": "Hugging Face API令牌",
|
201 |
-
"url": "https://huggingface.co/join"
|
202 |
},
|
203 |
"CHUNKR_API_KEY": {
|
204 |
"name": "Chunkr API",
|
205 |
"desc": "Chunkr API密钥",
|
206 |
-
"url": "https://chunkr.ai/"
|
207 |
},
|
208 |
"FIRECRAWL_API_KEY": {
|
209 |
"name": "Firecrawl API",
|
210 |
"desc": "Firecrawl API密钥",
|
211 |
-
"url": "https://www.firecrawl.dev/"
|
212 |
-
}
|
213 |
}
|
214 |
|
215 |
# 默认环境变量模板
|
@@ -245,13 +327,12 @@ FIRECRAWL_API_KEY=""
|
|
245 |
"""
|
246 |
|
247 |
|
248 |
-
|
249 |
def validate_input(question: str) -> bool:
|
250 |
"""验证用户输入是否有效
|
251 |
-
|
252 |
Args:
|
253 |
question: 用户问题
|
254 |
-
|
255 |
Returns:
|
256 |
bool: 输入是否有效
|
257 |
"""
|
@@ -260,41 +341,38 @@ def validate_input(question: str) -> bool:
|
|
260 |
return False
|
261 |
return True
|
262 |
|
|
|
263 |
def run_owl(question: str, example_module: str) -> Tuple[str, str, str]:
|
264 |
"""运行OWL系统并返回结果
|
265 |
-
|
266 |
Args:
|
267 |
question: 用户问题
|
268 |
example_module: 要导入的示例模块名(如 "run_terminal_zh" 或 "run_deep")
|
269 |
-
|
270 |
Returns:
|
271 |
Tuple[...]: 回答、令牌计数、状态
|
272 |
"""
|
273 |
global CURRENT_PROCESS
|
274 |
-
|
275 |
# 验证输入
|
276 |
if not validate_input(question):
|
277 |
logging.warning("用户提交了无效的输入")
|
278 |
-
return (
|
279 |
-
|
280 |
-
"0",
|
281 |
-
"❌ 错误: 输入无效"
|
282 |
-
)
|
283 |
-
|
284 |
try:
|
285 |
# 确保环境变量已加载
|
286 |
load_dotenv(find_dotenv(), override=True)
|
287 |
logging.info(f"处理问题: '{question}', 使用模块: {example_module}")
|
288 |
-
|
289 |
# 检查模块是否在MODULE_DESCRIPTIONS中
|
290 |
if example_module not in MODULE_DESCRIPTIONS:
|
291 |
logging.error(f"用户选择了不支持的模块: {example_module}")
|
292 |
return (
|
293 |
-
f"所选模块 '{example_module}' 不受支持",
|
294 |
-
"0",
|
295 |
-
|
296 |
)
|
297 |
-
|
298 |
# 动态导入目标模块
|
299 |
module_path = f"owl.examples.{example_module}"
|
300 |
try:
|
@@ -303,41 +381,36 @@ def run_owl(question: str, example_module: str) -> Tuple[str, str, str]:
|
|
303 |
except ImportError as ie:
|
304 |
logging.error(f"无法导入模块 {module_path}: {str(ie)}")
|
305 |
return (
|
306 |
-
f"无法导入模块: {module_path}",
|
307 |
-
"0",
|
308 |
-
f"❌ 错误: 模块 {example_module} 不存在或无法加载 - {str(ie)}"
|
309 |
)
|
310 |
except Exception as e:
|
311 |
logging.error(f"导入模块 {module_path} 时发生错误: {str(e)}")
|
312 |
-
return (
|
313 |
-
|
314 |
-
"0",
|
315 |
-
f"❌ 错误: {str(e)}"
|
316 |
-
)
|
317 |
-
|
318 |
# 检查是否包含construct_society函数
|
319 |
if not hasattr(module, "construct_society"):
|
320 |
logging.error(f"模块 {module_path} 中未找到 construct_society 函数")
|
321 |
return (
|
322 |
-
f"模块 {module_path} 中未找到 construct_society 函数",
|
323 |
-
"0",
|
324 |
-
|
325 |
)
|
326 |
-
|
327 |
# 构建社会模拟
|
328 |
try:
|
329 |
logging.info("正在构建社会模拟...")
|
330 |
society = module.construct_society(question)
|
331 |
-
|
332 |
|
333 |
except Exception as e:
|
334 |
logging.error(f"构建社会模拟时发生错误: {str(e)}")
|
335 |
return (
|
336 |
-
f"构建社会模拟时发生错误: {str(e)}",
|
337 |
-
"0",
|
338 |
-
f"❌ 错误: 构建失败 - {str(e)}"
|
339 |
)
|
340 |
-
|
341 |
# 运行社会模拟
|
342 |
try:
|
343 |
logging.info("正在运行社会模拟...")
|
@@ -346,42 +419,45 @@ def run_owl(question: str, example_module: str) -> Tuple[str, str, str]:
|
|
346 |
except Exception as e:
|
347 |
logging.error(f"运行社会模拟时发生错误: {str(e)}")
|
348 |
return (
|
349 |
-
f"运行社会模拟时发生错误: {str(e)}",
|
350 |
-
"0",
|
351 |
-
f"❌ 错误: 运行失败 - {str(e)}"
|
352 |
)
|
353 |
-
|
354 |
|
355 |
-
|
356 |
# 安全地获取令牌计数
|
357 |
if not isinstance(token_info, dict):
|
358 |
token_info = {}
|
359 |
-
|
360 |
completion_tokens = token_info.get("completion_token_count", 0)
|
361 |
prompt_tokens = token_info.get("prompt_token_count", 0)
|
362 |
total_tokens = completion_tokens + prompt_tokens
|
363 |
-
|
364 |
-
logging.info(
|
365 |
-
|
|
|
|
|
366 |
return (
|
367 |
-
answer,
|
368 |
-
f"完成令牌: {completion_tokens:,} | 提示令牌: {prompt_tokens:,} | 总计: {total_tokens:,}",
|
369 |
-
"✅ 成功完成"
|
370 |
)
|
371 |
-
|
372 |
except Exception as e:
|
373 |
logging.error(f"处理问题时发生未捕获的错误: {str(e)}")
|
374 |
-
return (
|
375 |
-
|
376 |
-
"0",
|
377 |
-
f"❌ 错误: {str(e)}"
|
378 |
-
)
|
379 |
|
380 |
def update_module_description(module_name: str) -> str:
|
381 |
"""返回所选模块的描述"""
|
382 |
return MODULE_DESCRIPTIONS.get(module_name, "无可用描述")
|
383 |
|
|
|
384 |
# 环境变量管理功能
|
|
|
|
|
|
|
|
|
|
|
385 |
def init_env_file():
|
386 |
"""初始化.env文件如果不存在"""
|
387 |
dotenv_path = find_dotenv()
|
@@ -391,116 +467,332 @@ def init_env_file():
|
|
391 |
dotenv_path = find_dotenv()
|
392 |
return dotenv_path
|
393 |
|
|
|
394 |
def load_env_vars():
|
395 |
-
"""加载环境变量并返回字典格式
|
|
|
|
|
|
|
|
|
396 |
dotenv_path = init_env_file()
|
397 |
load_dotenv(dotenv_path, override=True)
|
398 |
-
|
399 |
-
|
|
|
400 |
with open(dotenv_path, "r") as f:
|
401 |
for line in f:
|
402 |
line = line.strip()
|
403 |
if line and not line.startswith("#"):
|
404 |
if "=" in line:
|
405 |
key, value = line.split("=", 1)
|
406 |
-
|
407 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
408 |
return env_vars
|
409 |
|
|
|
410 |
def save_env_vars(env_vars):
|
411 |
-
"""保存环境变量到.env文件
|
|
|
|
|
|
|
|
|
412 |
try:
|
413 |
dotenv_path = init_env_file()
|
414 |
-
|
415 |
# 保存每个环境变量
|
416 |
-
for key,
|
417 |
if key and key.strip(): # 确保键不为空
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
set_key(dotenv_path, key.strip(), value.strip())
|
419 |
-
|
420 |
# 重新加载环境变量以确保生效
|
421 |
load_dotenv(dotenv_path, override=True)
|
422 |
-
|
423 |
return True, "环境变量已成功保存!"
|
424 |
except Exception as e:
|
425 |
return False, f"保存环境变量时出错: {str(e)}"
|
426 |
|
427 |
-
|
428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
429 |
try:
|
430 |
if not key or not key.strip():
|
431 |
return False, "变量名不能为空"
|
432 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
433 |
dotenv_path = init_env_file()
|
434 |
-
set_key(dotenv_path, key
|
435 |
load_dotenv(dotenv_path, override=True)
|
436 |
-
|
437 |
return True, f"环境变量 {key} 已成功添加/更新!"
|
438 |
except Exception as e:
|
439 |
return False, f"添加环境变量时出错: {str(e)}"
|
440 |
|
|
|
441 |
def delete_env_var(key):
|
442 |
"""删除环境变量"""
|
443 |
try:
|
444 |
if not key or not key.strip():
|
445 |
return False, "变量名不能为空"
|
446 |
-
|
|
|
|
|
|
|
447 |
dotenv_path = init_env_file()
|
448 |
-
unset_key(dotenv_path, key
|
449 |
-
|
|
|
|
|
|
|
|
|
450 |
# 从当前进程环境中也删除
|
451 |
if key in os.environ:
|
452 |
del os.environ[key]
|
453 |
-
|
454 |
return True, f"环境变量 {key} 已成功删除!"
|
455 |
except Exception as e:
|
456 |
return False, f"删除环境变量时出错: {str(e)}"
|
457 |
|
458 |
-
|
459 |
-
|
460 |
-
|
|
|
461 |
Args:
|
462 |
key: 环境变量名
|
463 |
-
|
464 |
-
|
465 |
Returns:
|
466 |
-
|
467 |
"""
|
468 |
-
#
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
478 |
|
479 |
def update_env_table():
|
480 |
-
"""
|
481 |
env_vars = load_env_vars()
|
482 |
-
#
|
483 |
-
|
484 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
485 |
|
486 |
def create_ui():
|
487 |
"""创建增强版Gradio界面"""
|
488 |
-
|
489 |
-
#
|
490 |
-
def update_logs():
|
491 |
-
"""获取最新日志并返回给前端显示"""
|
492 |
-
return get_latest_logs(100)
|
493 |
-
|
494 |
def update_logs2():
|
495 |
"""获取最新对话记录并返回给前端显示"""
|
496 |
-
return get_latest_logs(100,
|
497 |
-
|
498 |
def clear_log_file():
|
499 |
"""清空日志文件内容"""
|
500 |
try:
|
501 |
if LOG_FILE and os.path.exists(LOG_FILE):
|
502 |
# 清空日志文件内容而不是删除文件
|
503 |
-
open(LOG_FILE,
|
504 |
logging.info("日志文件已清空")
|
505 |
# 清空日志队列
|
506 |
while not LOG_QUEUE.empty():
|
@@ -508,82 +800,85 @@ def create_ui():
|
|
508 |
LOG_QUEUE.get_nowait()
|
509 |
except queue.Empty:
|
510 |
break
|
511 |
-
|
512 |
-
while not LOG_QUEUE2.empty():
|
513 |
-
try:
|
514 |
-
LOG_QUEUE2.get_nowait()
|
515 |
-
except queue.Empty:
|
516 |
-
break
|
517 |
-
return "日志文件已清空"
|
518 |
else:
|
519 |
-
return "
|
520 |
except Exception as e:
|
521 |
logging.error(f"清空日志文件时出错: {str(e)}")
|
522 |
-
return
|
523 |
-
|
524 |
# 创建一个实时日志更新函数
|
525 |
def process_with_live_logs(question, module_name):
|
526 |
"""处理问题并实时更新日志"""
|
527 |
global CURRENT_PROCESS
|
528 |
-
|
529 |
# 创建一个后台线程来处理问题
|
530 |
result_queue = queue.Queue()
|
531 |
-
|
532 |
def process_in_background():
|
533 |
try:
|
534 |
result = run_owl(question, module_name)
|
535 |
result_queue.put(result)
|
536 |
except Exception as e:
|
537 |
result_queue.put((f"发生错误: {str(e)}", "0", f"❌ 错误: {str(e)}"))
|
538 |
-
|
539 |
# 启动后台处理线程
|
540 |
bg_thread = threading.Thread(target=process_in_background)
|
541 |
CURRENT_PROCESS = bg_thread # 记录当前进程
|
542 |
bg_thread.start()
|
543 |
-
|
544 |
# 在等待处理完成的同时,每秒更新一次日志
|
545 |
while bg_thread.is_alive():
|
546 |
-
#
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
# 始终更新状态
|
551 |
-
yield
|
552 |
-
|
|
|
|
|
|
|
|
|
553 |
time.sleep(1)
|
554 |
-
|
555 |
# 处理完成,获取结果
|
556 |
if not result_queue.empty():
|
557 |
result = result_queue.get()
|
558 |
answer, token_count, status = result
|
559 |
-
|
560 |
-
#
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
# 根据状态设置不同的指示器
|
565 |
if "错误" in status:
|
566 |
-
status_with_indicator =
|
|
|
|
|
567 |
else:
|
568 |
-
status_with_indicator =
|
569 |
-
|
570 |
-
|
|
|
|
|
571 |
else:
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
|
|
|
|
|
|
576 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as app:
|
577 |
-
|
578 |
-
|
579 |
# 🦉 OWL 多智能体协作系统
|
580 |
|
581 |
基于CAMEL框架开发的先进多智能体协作系统,旨在通过智能体协作解决复杂问题。
|
582 |
"""
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
<style>
|
588 |
/* 聊天容器样式 */
|
589 |
.chat-container .chatbot {
|
@@ -646,6 +941,130 @@ def create_ui():
|
|
646 |
line-height: 1.4;
|
647 |
}
|
648 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
649 |
|
650 |
@keyframes pulse {
|
651 |
0% { opacity: 1; }
|
@@ -654,218 +1073,162 @@ def create_ui():
|
|
654 |
}
|
655 |
</style>
|
656 |
""")
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
675 |
)
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
interactive=False,
|
682 |
-
|
|
|
|
|
|
|
|
|
683 |
)
|
684 |
-
|
685 |
with gr.Row():
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
value="<span class='status-indicator status-success'></span> 已就绪",
|
690 |
-
label="状态"
|
691 |
-
)
|
692 |
-
token_count_output = gr.Textbox(
|
693 |
-
label="令牌计数",
|
694 |
-
interactive=False,
|
695 |
-
elem_classes="token-count"
|
696 |
-
)
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
with gr.Tabs(): # 设置对话记录为默认选中的标签页
|
701 |
-
with gr.TabItem("对话记录"):
|
702 |
-
# 添加对话记录显示区域
|
703 |
-
log_display2 = gr.Textbox(
|
704 |
-
label="对话记录",
|
705 |
-
lines=25,
|
706 |
-
max_lines=100,
|
707 |
-
interactive=False,
|
708 |
-
autoscroll=True,
|
709 |
-
show_copy_button=True,
|
710 |
-
elem_classes="log-display",
|
711 |
-
container=True
|
712 |
-
)
|
713 |
-
|
714 |
-
with gr.Row():
|
715 |
-
refresh_logs_button2 = gr.Button("刷新记录")
|
716 |
-
auto_refresh_checkbox2 = gr.Checkbox(
|
717 |
-
label="自动刷新",
|
718 |
-
value=True,
|
719 |
-
interactive=True
|
720 |
-
)
|
721 |
-
clear_logs_button2 = gr.Button("清空记录", variant="secondary")
|
722 |
-
|
723 |
-
with gr.TabItem("系统日志"):
|
724 |
-
# 添加日志显示区域
|
725 |
-
log_display = gr.Textbox(
|
726 |
-
label="系统日志",
|
727 |
-
lines=25,
|
728 |
-
max_lines=100,
|
729 |
-
interactive=False,
|
730 |
-
autoscroll=True,
|
731 |
-
show_copy_button=True,
|
732 |
-
elem_classes="log-display",
|
733 |
-
container=True
|
734 |
-
)
|
735 |
-
|
736 |
-
with gr.Row():
|
737 |
-
refresh_logs_button = gr.Button("刷新日志")
|
738 |
-
auto_refresh_checkbox = gr.Checkbox(
|
739 |
-
label="自动刷新",
|
740 |
-
value=True,
|
741 |
-
interactive=True
|
742 |
-
)
|
743 |
-
clear_logs_button = gr.Button("清空日志", variant="secondary")
|
744 |
-
with gr.TabItem("回答"):
|
745 |
-
answer_output = gr.Textbox(
|
746 |
-
label="回答",
|
747 |
-
lines=10,
|
748 |
-
elem_classes="answer-box"
|
749 |
)
|
750 |
-
|
751 |
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
with gr.TabItem("环境变量管理", id="env-settings"):
|
756 |
gr.Markdown("""
|
757 |
-
|
758 |
-
|
759 |
-
在此处设置模型API密钥和其他服务凭证。这些信息将保存在本地的`.env`文件中,确保您的API密钥安全存储且不会上传到网络。
|
760 |
-
""")
|
761 |
-
|
762 |
-
# 添加API密钥获取指南
|
763 |
-
gr.Markdown("### API密钥获取指南")
|
764 |
-
|
765 |
-
for key, info in API_HELP_INFO.items():
|
766 |
-
with gr.Accordion(f"{info['name']} ({key})", open=False):
|
767 |
-
gr.Markdown(f"""
|
768 |
-
- **说明**: {info['desc']}
|
769 |
-
- **获取地址**: [{info['url']}]({info['url']})
|
770 |
-
""")
|
771 |
-
|
772 |
-
gr.Markdown("---")
|
773 |
-
|
774 |
-
# 环境变量表格
|
775 |
-
env_table = gr.Dataframe(
|
776 |
-
headers=["变量名", "值"],
|
777 |
-
datatype=["str", "str"],
|
778 |
-
row_count=10,
|
779 |
-
col_count=(2, "fixed"),
|
780 |
-
value=update_env_table,
|
781 |
-
label="当前环境变量",
|
782 |
-
interactive=False
|
783 |
-
)
|
784 |
-
|
785 |
-
with gr.Row():
|
786 |
-
with gr.Column(scale=1):
|
787 |
-
new_env_key = gr.Textbox(label="变量名", placeholder="例如: OPENAI_API_KEY")
|
788 |
-
with gr.Column(scale=2):
|
789 |
-
new_env_value = gr.Textbox(label="值", placeholder="输入API密钥或其他配置值")
|
790 |
-
|
791 |
-
with gr.Row():
|
792 |
-
add_env_button = gr.Button("添加/更新变量", variant="primary")
|
793 |
-
refresh_button = gr.Button("刷新变量列表")
|
794 |
-
delete_env_button = gr.Button("删除选定变量", variant="stop")
|
795 |
-
|
796 |
-
env_status = gr.Textbox(label="状态", interactive=False)
|
797 |
-
|
798 |
-
# 变量选择器(用于删除)
|
799 |
-
env_var_to_delete = gr.Dropdown(
|
800 |
-
choices=[],
|
801 |
-
label="选择要删除的变量",
|
802 |
-
interactive=True
|
803 |
-
)
|
804 |
-
|
805 |
-
# 更新变量选择器的选项
|
806 |
-
def update_delete_dropdown():
|
807 |
-
env_vars = load_env_vars()
|
808 |
-
return gr.Dropdown.update(choices=list(env_vars.keys()))
|
809 |
-
|
810 |
-
# 连接事件处理函数
|
811 |
-
add_env_button.click(
|
812 |
-
fn=lambda k, v: add_env_var(k, v),
|
813 |
-
inputs=[new_env_key, new_env_value],
|
814 |
-
outputs=[env_status]
|
815 |
-
).then(
|
816 |
-
fn=update_env_table,
|
817 |
-
outputs=[env_table]
|
818 |
-
).then(
|
819 |
-
fn=update_delete_dropdown,
|
820 |
-
outputs=[env_var_to_delete]
|
821 |
-
).then(
|
822 |
-
fn=lambda: ("", ""), # 修改为返回两个空字符串的元组
|
823 |
-
outputs=[new_env_key, new_env_value]
|
824 |
-
)
|
825 |
-
|
826 |
-
refresh_button.click(
|
827 |
-
fn=update_env_table,
|
828 |
-
outputs=[env_table]
|
829 |
-
).then(
|
830 |
-
fn=update_delete_dropdown,
|
831 |
-
outputs=[env_var_to_delete]
|
832 |
-
)
|
833 |
-
|
834 |
-
delete_env_button.click(
|
835 |
-
fn=lambda k: delete_env_var(k),
|
836 |
-
inputs=[env_var_to_delete],
|
837 |
-
outputs=[env_status]
|
838 |
-
).then(
|
839 |
-
fn=update_env_table,
|
840 |
-
outputs=[env_table]
|
841 |
-
).then(
|
842 |
-
fn=update_delete_dropdown,
|
843 |
-
outputs=[env_var_to_delete]
|
844 |
-
)
|
845 |
|
846 |
-
|
847 |
-
|
848 |
-
|
849 |
-
|
850 |
-
# 示例问题
|
851 |
-
examples = [
|
852 |
-
"打开百度搜索,总结一下camel-ai的camel框架的github star、fork数目等,并把数字用plot包写成python文件保存到本地,用本地终端执行python文件显示图出来给我",
|
853 |
-
"请分析GitHub上CAMEL-AI项目的最新统计数据。找出该项目的星标数量、贡献者名称,把内容整理成一个markdown文件保存到本地",
|
854 |
-
"浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格",
|
855 |
-
"写一个hello world的python文件,保存到本地",
|
856 |
-
|
857 |
-
]
|
858 |
-
|
859 |
-
gr.Examples(
|
860 |
-
examples=examples,
|
861 |
-
inputs=question_input
|
862 |
-
)
|
863 |
-
|
864 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
865 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
866 |
|
867 |
-
|
868 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
869 |
<div class="footer" id="about">
|
870 |
<h3>关于 OWL 多智能体协作系统</h3>
|
871 |
<p>OWL 是一个基于CAMEL框架开发的先进多智能体协作系统,旨在通过智能体协作解决复杂问题。</p>
|
@@ -873,78 +1236,46 @@ def create_ui():
|
|
873 |
<p><a href="https://github.com/camel-ai/owl" target="_blank">GitHub</a></p>
|
874 |
</div>
|
875 |
""")
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
894 |
-
|
895 |
-
|
896 |
-
|
897 |
-
|
898 |
-
|
899 |
-
|
900 |
-
|
901 |
-
|
902 |
-
|
903 |
-
|
904 |
-
|
905 |
-
|
906 |
-
|
907 |
-
|
908 |
-
|
909 |
-
|
910 |
-
|
911 |
-
|
912 |
-
|
913 |
-
def toggle_auto_refresh(enabled):
|
914 |
-
if enabled:
|
915 |
-
return gr.update(every=3)
|
916 |
-
else:
|
917 |
-
return gr.update(every=0)
|
918 |
-
|
919 |
-
auto_refresh_checkbox.change(
|
920 |
-
fn=toggle_auto_refresh,
|
921 |
-
inputs=[auto_refresh_checkbox],
|
922 |
-
outputs=[log_display]
|
923 |
-
)
|
924 |
-
|
925 |
-
auto_refresh_checkbox2.change(
|
926 |
-
fn=toggle_auto_refresh,
|
927 |
-
inputs=[auto_refresh_checkbox2],
|
928 |
-
outputs=[log_display2]
|
929 |
-
)
|
930 |
-
|
931 |
-
# 设置自动刷新(默认每3秒刷新一次)
|
932 |
-
if auto_refresh_checkbox.value:
|
933 |
-
app.load(
|
934 |
-
fn=update_logs,
|
935 |
-
outputs=[log_display],
|
936 |
-
every=2
|
937 |
-
)
|
938 |
-
|
939 |
-
if auto_refresh_checkbox2.value:
|
940 |
-
app.load(
|
941 |
-
fn=update_logs2,
|
942 |
-
outputs=[log_display2],
|
943 |
-
every=2
|
944 |
-
)
|
945 |
-
|
946 |
return app
|
947 |
|
|
|
948 |
# 主函数
|
949 |
def main():
|
950 |
try:
|
@@ -952,35 +1283,40 @@ def main():
|
|
952 |
global LOG_FILE
|
953 |
LOG_FILE = setup_logging()
|
954 |
logging.info("OWL Web应用程序启动")
|
955 |
-
|
956 |
# 启动日志读取线程
|
957 |
-
log_thread = threading.Thread(
|
|
|
|
|
958 |
log_thread.start()
|
959 |
logging.info("日志读取线程已启动")
|
960 |
-
|
961 |
# 初始化.env文件(如果不存在)
|
962 |
init_env_file()
|
963 |
app = create_ui()
|
964 |
-
|
965 |
# 注册应用关闭时的清理函数
|
966 |
def cleanup():
|
967 |
global STOP_LOG_THREAD, STOP_REQUESTED
|
968 |
STOP_LOG_THREAD.set()
|
969 |
STOP_REQUESTED.set()
|
970 |
logging.info("应用程序关闭,停止日志线程")
|
971 |
-
|
972 |
-
app.
|
|
|
973 |
except Exception as e:
|
974 |
logging.error(f"启动应用程序时发生错误: {str(e)}")
|
975 |
print(f"启动应用程序时发生错误: {str(e)}")
|
976 |
import traceback
|
|
|
977 |
traceback.print_exc()
|
978 |
-
|
979 |
finally:
|
980 |
# 确保日志线程停止
|
981 |
STOP_LOG_THREAD.set()
|
982 |
STOP_REQUESTED.set()
|
983 |
logging.info("应用程序关闭")
|
984 |
|
|
|
985 |
if __name__ == "__main__":
|
986 |
-
main()
|
|
|
1 |
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
2 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
3 |
+
# you may not use this file except in compliance with the License.
|
4 |
+
# You may obtain a copy of the License at
|
5 |
+
#
|
6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
7 |
+
#
|
8 |
+
# Unless required by applicable law or agreed to in writing, software
|
9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
11 |
+
# See the License for the specific language governing permissions and
|
12 |
+
# limitations under the License.
|
13 |
+
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
|
14 |
# Import from the correct module path
|
15 |
from owl.utils import run_society
|
16 |
import os
|
|
|
19 |
import json
|
20 |
import logging
|
21 |
import datetime
|
22 |
+
from typing import Tuple
|
23 |
import importlib
|
24 |
from dotenv import load_dotenv, set_key, find_dotenv, unset_key
|
25 |
import threading
|
26 |
import queue
|
27 |
+
import re # For regular expression operations
|
28 |
+
|
29 |
+
os.environ["PYTHONIOENCODING"] = "utf-8"
|
|
|
|
|
|
|
30 |
|
|
|
31 |
|
32 |
# 配置日志系统
|
33 |
def setup_logging():
|
|
|
35 |
# 创建logs目录(如果不存在)
|
36 |
logs_dir = os.path.join(os.path.dirname(__file__), "logs")
|
37 |
os.makedirs(logs_dir, exist_ok=True)
|
38 |
+
|
39 |
# 生成日志文件名(使用当前日期)
|
40 |
current_date = datetime.datetime.now().strftime("%Y-%m-%d")
|
41 |
log_file = os.path.join(logs_dir, f"gradio_log_{current_date}.txt")
|
42 |
+
|
43 |
# 配置根日志记录器(捕获所有日志)
|
44 |
root_logger = logging.getLogger()
|
45 |
+
|
46 |
# 清除现有的处理器,避免重复日志
|
47 |
for handler in root_logger.handlers[:]:
|
48 |
root_logger.removeHandler(handler)
|
49 |
+
|
50 |
root_logger.setLevel(logging.INFO)
|
51 |
+
|
52 |
# 创建文件处理器
|
53 |
+
file_handler = logging.FileHandler(log_file, encoding="utf-8", mode="a")
|
54 |
file_handler.setLevel(logging.INFO)
|
55 |
+
|
56 |
# 创建控制台处理器
|
57 |
console_handler = logging.StreamHandler()
|
58 |
console_handler.setLevel(logging.INFO)
|
59 |
+
|
60 |
# 创建格式化器
|
61 |
+
formatter = logging.Formatter(
|
62 |
+
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
63 |
+
)
|
64 |
file_handler.setFormatter(formatter)
|
65 |
console_handler.setFormatter(formatter)
|
66 |
+
|
67 |
# 添加处理器到根日志记录器
|
68 |
root_logger.addHandler(file_handler)
|
69 |
root_logger.addHandler(console_handler)
|
70 |
+
|
71 |
logging.info("日志系统已初始化,日志文件: %s", log_file)
|
72 |
return log_file
|
73 |
|
74 |
+
|
75 |
# 全局变量
|
76 |
LOG_FILE = None
|
77 |
+
LOG_QUEUE: queue.Queue = queue.Queue() # 日志队列
|
|
|
78 |
STOP_LOG_THREAD = threading.Event()
|
79 |
CURRENT_PROCESS = None # 用于跟踪当前运行的进程
|
80 |
STOP_REQUESTED = threading.Event() # 用于标记是否请求停止
|
81 |
|
82 |
+
|
83 |
# 日志读取和更新函数
|
84 |
def log_reader_thread(log_file):
|
85 |
"""后台线程,持续读取日志文件并将新行添加到队列中"""
|
86 |
try:
|
87 |
+
with open(log_file, "r", encoding="utf-8") as f:
|
88 |
# 移动到文件末尾
|
89 |
f.seek(0, 2)
|
90 |
+
|
91 |
while not STOP_LOG_THREAD.is_set():
|
92 |
line = f.readline()
|
93 |
if line:
|
94 |
+
LOG_QUEUE.put(line) # 添加到对话记录队列
|
|
|
95 |
else:
|
96 |
# 没有新行,等待一小段时间
|
97 |
time.sleep(0.1)
|
98 |
except Exception as e:
|
99 |
logging.error(f"日志读取线程出错: {str(e)}")
|
100 |
|
101 |
+
|
102 |
def get_latest_logs(max_lines=100, queue_source=None):
|
103 |
"""从队列中获取最新的日志行,如果队列为空则直接从文件读取
|
104 |
+
|
105 |
Args:
|
106 |
max_lines: 最大返回行数
|
107 |
queue_source: 指定使用哪个队列,默认为LOG_QUEUE
|
108 |
+
|
109 |
Returns:
|
110 |
str: 日志内容
|
111 |
"""
|
112 |
logs = []
|
113 |
log_queue = queue_source if queue_source else LOG_QUEUE
|
114 |
+
|
115 |
+
# 创建一个临时队列来存储日志,以便我们可以处理它们而不会从原始队列中删除它们
|
116 |
+
temp_queue = queue.Queue()
|
117 |
+
temp_logs = []
|
118 |
+
|
119 |
try:
|
120 |
# 尝试从队列中获取所有可用的日志行
|
121 |
+
while not log_queue.empty() and len(temp_logs) < max_lines:
|
122 |
+
log = log_queue.get_nowait()
|
123 |
+
temp_logs.append(log)
|
124 |
+
temp_queue.put(log) # 将日志放回临时队列
|
125 |
except queue.Empty:
|
126 |
pass
|
127 |
+
|
128 |
+
# 处理对话记录
|
129 |
+
logs = temp_logs
|
130 |
+
|
131 |
# 如果没有新日志或日志不足,尝试直接从文件读取最后几行
|
132 |
if len(logs) < max_lines and LOG_FILE and os.path.exists(LOG_FILE):
|
133 |
try:
|
134 |
+
with open(LOG_FILE, "r", encoding="utf-8") as f:
|
135 |
all_lines = f.readlines()
|
136 |
# 如果队列中已有一些日志,只读取剩余需要的行数
|
137 |
remaining_lines = max_lines - len(logs)
|
138 |
+
file_logs = (
|
139 |
+
all_lines[-remaining_lines:]
|
140 |
+
if len(all_lines) > remaining_lines
|
141 |
+
else all_lines
|
142 |
+
)
|
143 |
+
|
144 |
# 将文件日志添加到队列日志之前
|
145 |
logs = file_logs + logs
|
146 |
except Exception as e:
|
|
|
148 |
logging.error(error_msg)
|
149 |
if not logs: # 只有在没有任何日志的情况下才添加错误消息
|
150 |
logs = [error_msg]
|
151 |
+
|
152 |
# 如果仍然没有日志,返回提示信息
|
153 |
if not logs:
|
154 |
+
return "暂无对话记录。"
|
155 |
+
|
156 |
+
# 过滤日志,只保留 camel.agents.chat_agent - INFO 的日志
|
157 |
+
filtered_logs = []
|
158 |
for log in logs:
|
159 |
+
if "camel.agents.chat_agent - INFO" in log:
|
160 |
+
filtered_logs.append(log)
|
161 |
+
|
162 |
+
# 如果过滤后没有日志,返回提示信息
|
163 |
+
if not filtered_logs:
|
164 |
+
return "暂无对话记录。"
|
165 |
+
|
166 |
+
# 处理日志内容,提取最新的用户和助手消息
|
167 |
+
simplified_logs = []
|
168 |
+
|
169 |
+
# 使用集合来跟踪已经处理过的消息,避免重复
|
170 |
+
processed_messages = set()
|
171 |
+
|
172 |
+
def process_message(role, content):
|
173 |
+
# 创建一个唯一标识符来跟踪消息
|
174 |
+
msg_id = f"{role}:{content}"
|
175 |
+
if msg_id in processed_messages:
|
176 |
+
return None
|
177 |
+
|
178 |
+
processed_messages.add(msg_id)
|
179 |
+
content = content.replace("\\n", "\n")
|
180 |
+
lines = [line.strip() for line in content.split("\n")]
|
181 |
+
content = "\n".join(lines)
|
182 |
+
|
183 |
+
return f"[{role.title()} Agent]: {content}"
|
184 |
+
|
185 |
+
for log in filtered_logs:
|
186 |
+
formatted_messages = []
|
187 |
+
# 尝试提取消息数组
|
188 |
+
messages_match = re.search(
|
189 |
+
r"Model (.*?), index (\d+), processed these messages: (\[.*\])", log
|
190 |
+
)
|
191 |
+
|
192 |
+
if messages_match:
|
193 |
+
try:
|
194 |
+
messages = json.loads(messages_match.group(3))
|
195 |
+
for msg in messages:
|
196 |
+
if msg.get("role") in ["user", "assistant"]:
|
197 |
+
formatted_msg = process_message(
|
198 |
+
msg.get("role"), msg.get("content", "")
|
199 |
+
)
|
200 |
+
if formatted_msg:
|
201 |
+
formatted_messages.append(formatted_msg)
|
202 |
+
except json.JSONDecodeError:
|
203 |
+
pass
|
204 |
+
|
205 |
+
# 如果JSON解析失败或没有找到消息数组,尝试直接提取对话内容
|
206 |
+
if not formatted_messages:
|
207 |
+
user_pattern = re.compile(r"\{'role': 'user', 'content': '(.*?)'\}")
|
208 |
+
assistant_pattern = re.compile(
|
209 |
+
r"\{'role': 'assistant', 'content': '(.*?)'\}"
|
210 |
+
)
|
211 |
+
|
212 |
+
for content in user_pattern.findall(log):
|
213 |
+
formatted_msg = process_message("user", content)
|
214 |
+
if formatted_msg:
|
215 |
+
formatted_messages.append(formatted_msg)
|
216 |
+
|
217 |
+
for content in assistant_pattern.findall(log):
|
218 |
+
formatted_msg = process_message("assistant", content)
|
219 |
+
if formatted_msg:
|
220 |
+
formatted_messages.append(formatted_msg)
|
221 |
+
|
222 |
+
if formatted_messages:
|
223 |
+
simplified_logs.append("\n\n".join(formatted_messages))
|
224 |
+
|
225 |
+
# 格式化日志输出,确保每个对话记录之间有适当的分隔
|
226 |
+
formatted_logs = []
|
227 |
+
for i, log in enumerate(simplified_logs):
|
228 |
# 移除开头和结尾的多余空白字符
|
229 |
log = log.strip()
|
230 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
formatted_logs.append(log)
|
232 |
+
|
233 |
+
# 确保每个对话记录以换行符结束
|
234 |
+
if not log.endswith("\n"):
|
235 |
+
formatted_logs.append("\n")
|
236 |
+
|
237 |
return "".join(formatted_logs)
|
238 |
|
239 |
+
|
240 |
# Dictionary containing module descriptions
|
241 |
MODULE_DESCRIPTIONS = {
|
242 |
"run": "默认模式:使用OpenAI模型的默认的智能体协作模式,适合大多数任务。",
|
243 |
+
"run_mini": "使用使用OpenAI模型最小化配置处理任务",
|
244 |
+
"run_deepseek_zh": "使用deepseek模型处理中文任务",
|
245 |
"run_terminal_zh": "终端模式:可执行命令行操作,支持网络搜索、文件处理等功能。适合需要系统交互的任务,使用OpenAI模型",
|
246 |
+
"run_gaia_roleplaying": "GAIA基准测试实现,用于评估Agent能力",
|
247 |
+
"run_openai_compatiable_model": "使用openai兼容模型处理任务",
|
248 |
+
"run_ollama": "使用本地ollama模型处理任务",
|
249 |
+
"run_qwen_mini_zh": "使用qwen模型最小化配置处理任务",
|
250 |
+
"run_qwen_zh": "使用qwen模型处理任务",
|
251 |
}
|
252 |
|
253 |
# API帮助信息
|
|
|
255 |
"OPENAI_API_KEY": {
|
256 |
"name": "OpenAI API",
|
257 |
"desc": "OpenAI API密钥,用于访问GPT系列模型",
|
258 |
+
"url": "https://platform.openai.com/api-keys",
|
259 |
},
|
260 |
"QWEN_API_KEY": {
|
261 |
"name": "通义千问 API",
|
262 |
"desc": "阿里云通义千问API密钥",
|
263 |
+
"url": "https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key",
|
264 |
},
|
265 |
"DEEPSEEK_API_KEY": {
|
266 |
"name": "DeepSeek API",
|
267 |
"desc": "DeepSeek API密钥",
|
268 |
+
"url": "https://platform.deepseek.com/api_keys",
|
269 |
},
|
270 |
"GOOGLE_API_KEY": {
|
271 |
"name": "Google Search API",
|
272 |
"desc": "Google自定义搜索API密钥",
|
273 |
+
"url": "https://developers.google.com/custom-search/v1/overview",
|
274 |
},
|
275 |
"SEARCH_ENGINE_ID": {
|
276 |
"name": "Google Search Engine ID",
|
277 |
"desc": "Google自定义搜索引擎ID",
|
278 |
+
"url": "https://developers.google.com/custom-search/v1/overview",
|
279 |
},
|
280 |
"HF_TOKEN": {
|
281 |
"name": "Hugging Face API",
|
282 |
"desc": "Hugging Face API令牌",
|
283 |
+
"url": "https://huggingface.co/join",
|
284 |
},
|
285 |
"CHUNKR_API_KEY": {
|
286 |
"name": "Chunkr API",
|
287 |
"desc": "Chunkr API密钥",
|
288 |
+
"url": "https://chunkr.ai/",
|
289 |
},
|
290 |
"FIRECRAWL_API_KEY": {
|
291 |
"name": "Firecrawl API",
|
292 |
"desc": "Firecrawl API密钥",
|
293 |
+
"url": "https://www.firecrawl.dev/",
|
294 |
+
},
|
295 |
}
|
296 |
|
297 |
# 默认环境变量模板
|
|
|
327 |
"""
|
328 |
|
329 |
|
|
|
330 |
def validate_input(question: str) -> bool:
|
331 |
"""验证用户输入是否有效
|
332 |
+
|
333 |
Args:
|
334 |
question: 用户问题
|
335 |
+
|
336 |
Returns:
|
337 |
bool: 输入是否有效
|
338 |
"""
|
|
|
341 |
return False
|
342 |
return True
|
343 |
|
344 |
+
|
345 |
def run_owl(question: str, example_module: str) -> Tuple[str, str, str]:
|
346 |
"""运行OWL系统并返回结果
|
347 |
+
|
348 |
Args:
|
349 |
question: 用户问题
|
350 |
example_module: 要导入的示例模块名(如 "run_terminal_zh" 或 "run_deep")
|
351 |
+
|
352 |
Returns:
|
353 |
Tuple[...]: 回答、令牌计数、状态
|
354 |
"""
|
355 |
global CURRENT_PROCESS
|
356 |
+
|
357 |
# 验证输入
|
358 |
if not validate_input(question):
|
359 |
logging.warning("用户提交了无效的输入")
|
360 |
+
return ("请输入有效的问题", "0", "❌ 错误: 输入无效")
|
361 |
+
|
|
|
|
|
|
|
|
|
362 |
try:
|
363 |
# 确保环境变量已加载
|
364 |
load_dotenv(find_dotenv(), override=True)
|
365 |
logging.info(f"处理问题: '{question}', 使用模块: {example_module}")
|
366 |
+
|
367 |
# 检查模块是否在MODULE_DESCRIPTIONS中
|
368 |
if example_module not in MODULE_DESCRIPTIONS:
|
369 |
logging.error(f"用户选择了不支持的模块: {example_module}")
|
370 |
return (
|
371 |
+
f"所选模块 '{example_module}' 不受支持",
|
372 |
+
"0",
|
373 |
+
"❌ 错误: 不支持的模块",
|
374 |
)
|
375 |
+
|
376 |
# 动态导入目标模块
|
377 |
module_path = f"owl.examples.{example_module}"
|
378 |
try:
|
|
|
381 |
except ImportError as ie:
|
382 |
logging.error(f"无法导入模块 {module_path}: {str(ie)}")
|
383 |
return (
|
384 |
+
f"无法导入模块: {module_path}",
|
385 |
+
"0",
|
386 |
+
f"❌ 错误: 模块 {example_module} 不存在或无法加载 - {str(ie)}",
|
387 |
)
|
388 |
except Exception as e:
|
389 |
logging.error(f"导入模块 {module_path} 时发生错误: {str(e)}")
|
390 |
+
return (f"导入模块时发生错误: {module_path}", "0", f"❌ 错误: {str(e)}")
|
391 |
+
|
|
|
|
|
|
|
|
|
392 |
# 检查是否包含construct_society函数
|
393 |
if not hasattr(module, "construct_society"):
|
394 |
logging.error(f"模块 {module_path} 中未找到 construct_society 函数")
|
395 |
return (
|
396 |
+
f"模块 {module_path} 中未找到 construct_society 函数",
|
397 |
+
"0",
|
398 |
+
"❌ 错误: 模块接口不兼容",
|
399 |
)
|
400 |
+
|
401 |
# 构建社会模拟
|
402 |
try:
|
403 |
logging.info("正在构建社会模拟...")
|
404 |
society = module.construct_society(question)
|
|
|
405 |
|
406 |
except Exception as e:
|
407 |
logging.error(f"构建社会模拟时发生错误: {str(e)}")
|
408 |
return (
|
409 |
+
f"构建社会模拟时发生错误: {str(e)}",
|
410 |
+
"0",
|
411 |
+
f"❌ 错误: 构建失败 - {str(e)}",
|
412 |
)
|
413 |
+
|
414 |
# 运行社会模拟
|
415 |
try:
|
416 |
logging.info("正在运行社会模拟...")
|
|
|
419 |
except Exception as e:
|
420 |
logging.error(f"运行社会模拟时发生错误: {str(e)}")
|
421 |
return (
|
422 |
+
f"运行社会模拟时发生错误: {str(e)}",
|
423 |
+
"0",
|
424 |
+
f"❌ 错误: 运行失败 - {str(e)}",
|
425 |
)
|
|
|
426 |
|
|
|
427 |
# 安全地获取令牌计数
|
428 |
if not isinstance(token_info, dict):
|
429 |
token_info = {}
|
430 |
+
|
431 |
completion_tokens = token_info.get("completion_token_count", 0)
|
432 |
prompt_tokens = token_info.get("prompt_token_count", 0)
|
433 |
total_tokens = completion_tokens + prompt_tokens
|
434 |
+
|
435 |
+
logging.info(
|
436 |
+
f"处理完成,令牌使用: 完成={completion_tokens}, 提示={prompt_tokens}, 总计={total_tokens}"
|
437 |
+
)
|
438 |
+
|
439 |
return (
|
440 |
+
answer,
|
441 |
+
f"完成令牌: {completion_tokens:,} | 提示令牌: {prompt_tokens:,} | 总计: {total_tokens:,}",
|
442 |
+
"✅ 成功完成",
|
443 |
)
|
444 |
+
|
445 |
except Exception as e:
|
446 |
logging.error(f"处理问题时发生未捕获的错误: {str(e)}")
|
447 |
+
return (f"发生错误: {str(e)}", "0", f"❌ 错误: {str(e)}")
|
448 |
+
|
|
|
|
|
|
|
449 |
|
450 |
def update_module_description(module_name: str) -> str:
|
451 |
"""返回所选模块的描述"""
|
452 |
return MODULE_DESCRIPTIONS.get(module_name, "无可用描述")
|
453 |
|
454 |
+
|
455 |
# 环境变量管理功能
|
456 |
+
|
457 |
+
# 存储前端配置的环境变量
|
458 |
+
WEB_FRONTEND_ENV_VARS: dict[str, str] = {}
|
459 |
+
|
460 |
+
|
461 |
def init_env_file():
|
462 |
"""初始化.env文件如果不存在"""
|
463 |
dotenv_path = find_dotenv()
|
|
|
467 |
dotenv_path = find_dotenv()
|
468 |
return dotenv_path
|
469 |
|
470 |
+
|
471 |
def load_env_vars():
|
472 |
+
"""加载环境变量并返回字典格式
|
473 |
+
|
474 |
+
Returns:
|
475 |
+
dict: 环境变量字典,每个值为一个包含值和来源的元组 (value, source)
|
476 |
+
"""
|
477 |
dotenv_path = init_env_file()
|
478 |
load_dotenv(dotenv_path, override=True)
|
479 |
+
|
480 |
+
# 从.env文件读取环境变量
|
481 |
+
env_file_vars = {}
|
482 |
with open(dotenv_path, "r") as f:
|
483 |
for line in f:
|
484 |
line = line.strip()
|
485 |
if line and not line.startswith("#"):
|
486 |
if "=" in line:
|
487 |
key, value = line.split("=", 1)
|
488 |
+
env_file_vars[key.strip()] = value.strip().strip("\"'")
|
489 |
+
|
490 |
+
# 从系统环境变量中获取
|
491 |
+
system_env_vars = {
|
492 |
+
k: v
|
493 |
+
for k, v in os.environ.items()
|
494 |
+
if k not in env_file_vars and k not in WEB_FRONTEND_ENV_VARS
|
495 |
+
}
|
496 |
+
|
497 |
+
# 合并环境变量,并标记来源
|
498 |
+
env_vars = {}
|
499 |
+
|
500 |
+
# 添加系统环境变量(最低优先级)
|
501 |
+
for key, value in system_env_vars.items():
|
502 |
+
env_vars[key] = (value, "系统")
|
503 |
+
|
504 |
+
# 添加.env文件环境变量(中等优先级)
|
505 |
+
for key, value in env_file_vars.items():
|
506 |
+
env_vars[key] = (value, ".env文件")
|
507 |
+
|
508 |
+
# 添加前端配置的环境变量(最高优先级)
|
509 |
+
for key, value in WEB_FRONTEND_ENV_VARS.items():
|
510 |
+
env_vars[key] = (value, "前端配置")
|
511 |
+
# 确保操作系统环境变量也被更新
|
512 |
+
os.environ[key] = value
|
513 |
+
|
514 |
return env_vars
|
515 |
|
516 |
+
|
517 |
def save_env_vars(env_vars):
|
518 |
+
"""保存环境变量到.env文件
|
519 |
+
|
520 |
+
Args:
|
521 |
+
env_vars: 字典,键为环境变量名,值可以是字符串或(值,来源)元组
|
522 |
+
"""
|
523 |
try:
|
524 |
dotenv_path = init_env_file()
|
525 |
+
|
526 |
# 保存每个环境变量
|
527 |
+
for key, value_data in env_vars.items():
|
528 |
if key and key.strip(): # 确保键不为空
|
529 |
+
# 处理值可能是元组的情况
|
530 |
+
if isinstance(value_data, tuple):
|
531 |
+
value = value_data[0]
|
532 |
+
else:
|
533 |
+
value = value_data
|
534 |
+
|
535 |
set_key(dotenv_path, key.strip(), value.strip())
|
536 |
+
|
537 |
# 重新加载环境变量以确保生效
|
538 |
load_dotenv(dotenv_path, override=True)
|
539 |
+
|
540 |
return True, "环境变量已成功保存!"
|
541 |
except Exception as e:
|
542 |
return False, f"保存环境变量时出错: {str(e)}"
|
543 |
|
544 |
+
|
545 |
+
def add_env_var(key, value, from_frontend=True):
|
546 |
+
"""添加或更新单个环境变量
|
547 |
+
|
548 |
+
Args:
|
549 |
+
key: 环境变量名
|
550 |
+
value: 环境变量值
|
551 |
+
from_frontend: 是否来自前端配置,默认为True
|
552 |
+
"""
|
553 |
try:
|
554 |
if not key or not key.strip():
|
555 |
return False, "变量名不能为空"
|
556 |
+
|
557 |
+
key = key.strip()
|
558 |
+
value = value.strip()
|
559 |
+
|
560 |
+
# 如果来自前端,则添加到前端环境变量字典
|
561 |
+
if from_frontend:
|
562 |
+
WEB_FRONTEND_ENV_VARS[key] = value
|
563 |
+
# 直接更新系统环境变量
|
564 |
+
os.environ[key] = value
|
565 |
+
|
566 |
+
# 同时更新.env文件
|
567 |
dotenv_path = init_env_file()
|
568 |
+
set_key(dotenv_path, key, value)
|
569 |
load_dotenv(dotenv_path, override=True)
|
570 |
+
|
571 |
return True, f"环境变量 {key} 已成功添加/更新!"
|
572 |
except Exception as e:
|
573 |
return False, f"添加环境变量时出错: {str(e)}"
|
574 |
|
575 |
+
|
576 |
def delete_env_var(key):
|
577 |
"""删除环境变量"""
|
578 |
try:
|
579 |
if not key or not key.strip():
|
580 |
return False, "变量名不能为空"
|
581 |
+
|
582 |
+
key = key.strip()
|
583 |
+
|
584 |
+
# 从.env文件中删除
|
585 |
dotenv_path = init_env_file()
|
586 |
+
unset_key(dotenv_path, key)
|
587 |
+
|
588 |
+
# 从前端环境变量字典中删除
|
589 |
+
if key in WEB_FRONTEND_ENV_VARS:
|
590 |
+
del WEB_FRONTEND_ENV_VARS[key]
|
591 |
+
|
592 |
# 从当前进程环境中也删除
|
593 |
if key in os.environ:
|
594 |
del os.environ[key]
|
595 |
+
|
596 |
return True, f"环境变量 {key} 已成功删除!"
|
597 |
except Exception as e:
|
598 |
return False, f"删除环境变量时出错: {str(e)}"
|
599 |
|
600 |
+
|
601 |
+
def is_api_related(key: str) -> bool:
|
602 |
+
"""判断环境变量是否与API相关
|
603 |
+
|
604 |
Args:
|
605 |
key: 环境变量名
|
606 |
+
|
|
|
607 |
Returns:
|
608 |
+
bool: 是否与API相关
|
609 |
"""
|
610 |
+
# API相关的关键词
|
611 |
+
api_keywords = [
|
612 |
+
"api",
|
613 |
+
"key",
|
614 |
+
"token",
|
615 |
+
"secret",
|
616 |
+
"password",
|
617 |
+
"openai",
|
618 |
+
"qwen",
|
619 |
+
"deepseek",
|
620 |
+
"google",
|
621 |
+
"search",
|
622 |
+
"hf",
|
623 |
+
"hugging",
|
624 |
+
"chunkr",
|
625 |
+
"firecrawl",
|
626 |
+
]
|
627 |
+
|
628 |
+
# 检查是否包含API相关关键词(不区分大小写)
|
629 |
+
return any(keyword in key.lower() for keyword in api_keywords)
|
630 |
+
|
631 |
+
|
632 |
+
def get_api_guide(key: str) -> str:
|
633 |
+
"""根据环境变量名返回对应的API获取指南
|
634 |
+
|
635 |
+
Args:
|
636 |
+
key: 环境变量名
|
637 |
+
|
638 |
+
Returns:
|
639 |
+
str: API获取指南链接或说明
|
640 |
+
"""
|
641 |
+
key_lower = key.lower()
|
642 |
+
if "openai" in key_lower:
|
643 |
+
return "https://platform.openai.com/api-keys"
|
644 |
+
elif "qwen" in key_lower or "dashscope" in key_lower:
|
645 |
+
return "https://help.aliyun.com/zh/model-studio/developer-reference/get-api-key"
|
646 |
+
elif "deepseek" in key_lower:
|
647 |
+
return "https://platform.deepseek.com/api_keys"
|
648 |
+
elif "google" in key_lower:
|
649 |
+
return "https://developers.google.com/custom-search/v1/overview"
|
650 |
+
elif "chunkr" in key_lower:
|
651 |
+
return "https://chunkr.ai/"
|
652 |
+
elif "firecrawl" in key_lower:
|
653 |
+
return "https://www.firecrawl.dev/"
|
654 |
+
else:
|
655 |
+
return ""
|
656 |
+
|
657 |
|
658 |
def update_env_table():
|
659 |
+
"""更新环境变量表格显示,只显示API相关的环境变量"""
|
660 |
env_vars = load_env_vars()
|
661 |
+
# 过滤出API相关的环境变量
|
662 |
+
api_env_vars = {k: v for k, v in env_vars.items() if is_api_related(k)}
|
663 |
+
# 转换为列表格式,以符合Gradio Dataframe的要求
|
664 |
+
# 格式: [变量名, 变量值, 获取指南链接]
|
665 |
+
result = []
|
666 |
+
for k, v in api_env_vars.items():
|
667 |
+
guide = get_api_guide(k)
|
668 |
+
# 如果有指南链接,创建一个可点击的链接
|
669 |
+
guide_link = (
|
670 |
+
f"<a href='{guide}' target='_blank' class='guide-link'>🔗 获取</a>"
|
671 |
+
if guide
|
672 |
+
else ""
|
673 |
+
)
|
674 |
+
result.append([k, v[0], guide_link])
|
675 |
+
return result
|
676 |
+
|
677 |
+
|
678 |
+
def save_env_table_changes(data):
|
679 |
+
"""保存环境变量表格的更改
|
680 |
+
|
681 |
+
Args:
|
682 |
+
data: Dataframe数据,可能是pandas DataFrame对象
|
683 |
+
|
684 |
+
Returns:
|
685 |
+
str: 操作状态信息,包含HTML格式的状态消息
|
686 |
+
"""
|
687 |
+
try:
|
688 |
+
logging.info(f"开始处理环境变量表格数据,类型: {type(data)}")
|
689 |
+
|
690 |
+
# 获取当前所有环境变量
|
691 |
+
current_env_vars = load_env_vars()
|
692 |
+
processed_keys = set() # 记录已处理的键,用于检测删除的变量
|
693 |
+
|
694 |
+
# 处理pandas DataFrame对象
|
695 |
+
import pandas as pd
|
696 |
+
|
697 |
+
if isinstance(data, pd.DataFrame):
|
698 |
+
# 获取列名信息
|
699 |
+
columns = data.columns.tolist()
|
700 |
+
logging.info(f"DataFrame列名: {columns}")
|
701 |
+
|
702 |
+
# 遍历DataFrame的每一行
|
703 |
+
for index, row in data.iterrows():
|
704 |
+
# 使用列名或索引访问数据
|
705 |
+
if len(columns) >= 3:
|
706 |
+
# 如果有列名,使用列名访问
|
707 |
+
key = row.iloc[1] if hasattr(row, "iloc") else row[1]
|
708 |
+
value = row.iloc[2] if hasattr(row, "iloc") else row[2]
|
709 |
+
|
710 |
+
# 检查是否为空行或已删除的变量
|
711 |
+
if key and str(key).strip(): # 如果键名不为空,则添加或更新
|
712 |
+
logging.info(f"处理环境变量: {key} = {value}")
|
713 |
+
add_env_var(key, str(value))
|
714 |
+
processed_keys.add(key)
|
715 |
+
# 处理其他格式
|
716 |
+
elif isinstance(data, dict):
|
717 |
+
logging.info(f"字典格式数据的键: {list(data.keys())}")
|
718 |
+
# 如果是字典格式,尝试不同的键
|
719 |
+
if "data" in data:
|
720 |
+
rows = data["data"]
|
721 |
+
elif "values" in data:
|
722 |
+
rows = data["values"]
|
723 |
+
elif "value" in data:
|
724 |
+
rows = data["value"]
|
725 |
+
else:
|
726 |
+
# 尝试直接使用字典作为行数据
|
727 |
+
rows = []
|
728 |
+
for key, value in data.items():
|
729 |
+
if key not in ["headers", "types", "columns"]:
|
730 |
+
rows.append([key, value])
|
731 |
+
|
732 |
+
if isinstance(rows, list):
|
733 |
+
for row in rows:
|
734 |
+
if isinstance(row, list) and len(row) >= 2:
|
735 |
+
key, value = row[0], row[1]
|
736 |
+
if key and str(key).strip():
|
737 |
+
add_env_var(key, str(value))
|
738 |
+
processed_keys.add(key)
|
739 |
+
elif isinstance(data, list):
|
740 |
+
# 列表格式
|
741 |
+
for row in data:
|
742 |
+
if isinstance(row, list) and len(row) >= 2:
|
743 |
+
key, value = row[0], row[1]
|
744 |
+
if key and str(key).strip():
|
745 |
+
add_env_var(key, str(value))
|
746 |
+
processed_keys.add(key)
|
747 |
+
else:
|
748 |
+
logging.error(f"未知的数据格式: {type(data)}")
|
749 |
+
return f"❌ 保存失败: 未知的数据格式 {type(data)}"
|
750 |
+
|
751 |
+
# 处理删除的变量 - 检查当前环境变量中是否有未在表格中出现的变量
|
752 |
+
api_related_keys = {k for k in current_env_vars.keys() if is_api_related(k)}
|
753 |
+
keys_to_delete = api_related_keys - processed_keys
|
754 |
+
|
755 |
+
# 删除不再表格中的变量
|
756 |
+
for key in keys_to_delete:
|
757 |
+
logging.info(f"删除环境变量: {key}")
|
758 |
+
delete_env_var(key)
|
759 |
+
|
760 |
+
return "✅ 环境变量已成功保存"
|
761 |
+
except Exception as e:
|
762 |
+
import traceback
|
763 |
+
|
764 |
+
error_details = traceback.format_exc()
|
765 |
+
logging.error(f"保存环境变量时出错: {str(e)}\n{error_details}")
|
766 |
+
return f"❌ 保存失败: {str(e)}"
|
767 |
+
|
768 |
+
|
769 |
+
def get_env_var_value(key):
|
770 |
+
"""获取环境变量的实际值
|
771 |
+
|
772 |
+
优先级:前端配置 > .env文件 > 系统环境变量
|
773 |
+
"""
|
774 |
+
# 检查前端配置的环境变量
|
775 |
+
if key in WEB_FRONTEND_ENV_VARS:
|
776 |
+
return WEB_FRONTEND_ENV_VARS[key]
|
777 |
+
|
778 |
+
# 检查系统环境变量(包括从.env加载的)
|
779 |
+
return os.environ.get(key, "")
|
780 |
+
|
781 |
|
782 |
def create_ui():
|
783 |
"""创建增强版Gradio界面"""
|
784 |
+
|
785 |
+
# 定义对话记录更新函数
|
|
|
|
|
|
|
|
|
786 |
def update_logs2():
|
787 |
"""获取最新对话记录并返回给前端显示"""
|
788 |
+
return get_latest_logs(100, LOG_QUEUE)
|
789 |
+
|
790 |
def clear_log_file():
|
791 |
"""清空日志文件内容"""
|
792 |
try:
|
793 |
if LOG_FILE and os.path.exists(LOG_FILE):
|
794 |
# 清空日志文件内容而不是删除文件
|
795 |
+
open(LOG_FILE, "w").close()
|
796 |
logging.info("日志文件已清空")
|
797 |
# 清空日志队列
|
798 |
while not LOG_QUEUE.empty():
|
|
|
800 |
LOG_QUEUE.get_nowait()
|
801 |
except queue.Empty:
|
802 |
break
|
803 |
+
return ""
|
|
|
|
|
|
|
|
|
|
|
|
|
804 |
else:
|
805 |
+
return ""
|
806 |
except Exception as e:
|
807 |
logging.error(f"清空日志文件时出错: {str(e)}")
|
808 |
+
return ""
|
809 |
+
|
810 |
# 创建一个实时日志更新函数
|
811 |
def process_with_live_logs(question, module_name):
|
812 |
"""处理问题并实时更新日志"""
|
813 |
global CURRENT_PROCESS
|
814 |
+
|
815 |
# 创建一个后台线程来处理问题
|
816 |
result_queue = queue.Queue()
|
817 |
+
|
818 |
def process_in_background():
|
819 |
try:
|
820 |
result = run_owl(question, module_name)
|
821 |
result_queue.put(result)
|
822 |
except Exception as e:
|
823 |
result_queue.put((f"发生错误: {str(e)}", "0", f"❌ 错误: {str(e)}"))
|
824 |
+
|
825 |
# 启动后台处理线程
|
826 |
bg_thread = threading.Thread(target=process_in_background)
|
827 |
CURRENT_PROCESS = bg_thread # 记录当前进程
|
828 |
bg_thread.start()
|
829 |
+
|
830 |
# 在等待处理完成的同时,每秒更新一次日志
|
831 |
while bg_thread.is_alive():
|
832 |
+
# 更新对话记录显示
|
833 |
+
logs2 = get_latest_logs(100, LOG_QUEUE)
|
834 |
+
|
|
|
835 |
# 始终更新状态
|
836 |
+
yield (
|
837 |
+
"0",
|
838 |
+
"<span class='status-indicator status-running'></span> 处理中...",
|
839 |
+
logs2,
|
840 |
+
)
|
841 |
+
|
842 |
time.sleep(1)
|
843 |
+
|
844 |
# 处理完成,获取结果
|
845 |
if not result_queue.empty():
|
846 |
result = result_queue.get()
|
847 |
answer, token_count, status = result
|
848 |
+
|
849 |
+
# 最后一次更新对话记录
|
850 |
+
logs2 = get_latest_logs(100, LOG_QUEUE)
|
851 |
+
|
|
|
852 |
# 根据状态设置不同的指示器
|
853 |
if "错误" in status:
|
854 |
+
status_with_indicator = (
|
855 |
+
f"<span class='status-indicator status-error'></span> {status}"
|
856 |
+
)
|
857 |
else:
|
858 |
+
status_with_indicator = (
|
859 |
+
f"<span class='status-indicator status-success'></span> {status}"
|
860 |
+
)
|
861 |
+
|
862 |
+
yield token_count, status_with_indicator, logs2
|
863 |
else:
|
864 |
+
logs2 = get_latest_logs(100, LOG_QUEUE)
|
865 |
+
yield (
|
866 |
+
"0",
|
867 |
+
"<span class='status-indicator status-error'></span> 已终止",
|
868 |
+
logs2,
|
869 |
+
)
|
870 |
+
|
871 |
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue")) as app:
|
872 |
+
gr.Markdown(
|
873 |
+
"""
|
874 |
# 🦉 OWL 多智能体协作系统
|
875 |
|
876 |
基于CAMEL框架开发的先进多智能体协作系统,旨在通过智能体协作解决复杂问题。
|
877 |
"""
|
878 |
+
)
|
879 |
+
|
880 |
+
# 添加自定义CSS
|
881 |
+
gr.HTML("""
|
882 |
<style>
|
883 |
/* 聊天容器样式 */
|
884 |
.chat-container .chatbot {
|
|
|
941 |
line-height: 1.4;
|
942 |
}
|
943 |
|
944 |
+
/* 环境变量管理样式 */
|
945 |
+
.env-manager-container {
|
946 |
+
border-radius: 10px;
|
947 |
+
padding: 15px;
|
948 |
+
background-color: #f9f9f9;
|
949 |
+
margin-bottom: 20px;
|
950 |
+
}
|
951 |
+
|
952 |
+
.env-controls, .api-help-container {
|
953 |
+
border-radius: 8px;
|
954 |
+
padding: 15px;
|
955 |
+
background-color: white;
|
956 |
+
box-shadow: 0 2px 6px rgba(0, 0, 0, 0.05);
|
957 |
+
height: 100%;
|
958 |
+
}
|
959 |
+
|
960 |
+
.env-add-group, .env-delete-group {
|
961 |
+
margin-top: 20px;
|
962 |
+
padding: 15px;
|
963 |
+
border-radius: 8px;
|
964 |
+
background-color: #f5f8ff;
|
965 |
+
border: 1px solid #e0e8ff;
|
966 |
+
}
|
967 |
+
|
968 |
+
.env-delete-group {
|
969 |
+
background-color: #fff5f5;
|
970 |
+
border: 1px solid #ffe0e0;
|
971 |
+
}
|
972 |
+
|
973 |
+
.env-buttons {
|
974 |
+
justify-content: flex-start;
|
975 |
+
gap: 10px;
|
976 |
+
margin-top: 10px;
|
977 |
+
}
|
978 |
+
|
979 |
+
.env-button {
|
980 |
+
min-width: 100px;
|
981 |
+
}
|
982 |
+
|
983 |
+
.delete-button {
|
984 |
+
background-color: #dc3545;
|
985 |
+
color: white;
|
986 |
+
}
|
987 |
+
|
988 |
+
.env-table {
|
989 |
+
margin-bottom: 15px;
|
990 |
+
}
|
991 |
+
|
992 |
+
/* 改进环境变量表格样式 */
|
993 |
+
.env-table table {
|
994 |
+
border-collapse: separate;
|
995 |
+
border-spacing: 0;
|
996 |
+
width: 100%;
|
997 |
+
border-radius: 8px;
|
998 |
+
overflow: hidden;
|
999 |
+
box-shadow: 0 2px 8px rgba(0,0,0,0.05);
|
1000 |
+
}
|
1001 |
+
|
1002 |
+
.env-table th {
|
1003 |
+
background-color: #f0f7ff;
|
1004 |
+
padding: 12px 15px;
|
1005 |
+
text-align: left;
|
1006 |
+
font-weight: 600;
|
1007 |
+
color: #2c7be5;
|
1008 |
+
border-bottom: 2px solid #e0e8ff;
|
1009 |
+
}
|
1010 |
+
|
1011 |
+
.env-table td {
|
1012 |
+
padding: 10px 15px;
|
1013 |
+
border-bottom: 1px solid #f0f0f0;
|
1014 |
+
}
|
1015 |
+
|
1016 |
+
.env-table tr:hover td {
|
1017 |
+
background-color: #f9fbff;
|
1018 |
+
}
|
1019 |
+
|
1020 |
+
.env-table tr:last-child td {
|
1021 |
+
border-bottom: none;
|
1022 |
+
}
|
1023 |
+
|
1024 |
+
/* 状态图标样式 */
|
1025 |
+
.status-icon-cell {
|
1026 |
+
text-align: center;
|
1027 |
+
font-size: 1.2em;
|
1028 |
+
}
|
1029 |
+
|
1030 |
+
/* 链接样式 */
|
1031 |
+
.guide-link {
|
1032 |
+
color: #2c7be5;
|
1033 |
+
text-decoration: none;
|
1034 |
+
cursor: pointer;
|
1035 |
+
font-weight: 500;
|
1036 |
+
}
|
1037 |
+
|
1038 |
+
.guide-link:hover {
|
1039 |
+
text-decoration: underline;
|
1040 |
+
}
|
1041 |
+
|
1042 |
+
.env-status {
|
1043 |
+
margin-top: 15px;
|
1044 |
+
font-weight: 500;
|
1045 |
+
padding: 10px;
|
1046 |
+
border-radius: 6px;
|
1047 |
+
transition: all 0.3s ease;
|
1048 |
+
}
|
1049 |
+
|
1050 |
+
.env-status-success {
|
1051 |
+
background-color: #d4edda;
|
1052 |
+
color: #155724;
|
1053 |
+
border: 1px solid #c3e6cb;
|
1054 |
+
}
|
1055 |
+
|
1056 |
+
.env-status-error {
|
1057 |
+
background-color: #f8d7da;
|
1058 |
+
color: #721c24;
|
1059 |
+
border: 1px solid #f5c6cb;
|
1060 |
+
}
|
1061 |
+
|
1062 |
+
.api-help-accordion {
|
1063 |
+
margin-bottom: 8px;
|
1064 |
+
border-radius: 6px;
|
1065 |
+
overflow: hidden;
|
1066 |
+
}
|
1067 |
+
|
1068 |
|
1069 |
@keyframes pulse {
|
1070 |
0% { opacity: 1; }
|
|
|
1073 |
}
|
1074 |
</style>
|
1075 |
""")
|
1076 |
+
|
1077 |
+
with gr.Row():
|
1078 |
+
with gr.Column(scale=1):
|
1079 |
+
question_input = gr.Textbox(
|
1080 |
+
lines=5,
|
1081 |
+
placeholder="请输入您的问题...",
|
1082 |
+
label="问题",
|
1083 |
+
elem_id="question_input",
|
1084 |
+
show_copy_button=True,
|
1085 |
+
)
|
1086 |
+
|
1087 |
+
# 增强版模块选择下拉菜单
|
1088 |
+
# 只包含MODULE_DESCRIPTIONS中定义的模块
|
1089 |
+
module_dropdown = gr.Dropdown(
|
1090 |
+
choices=list(MODULE_DESCRIPTIONS.keys()),
|
1091 |
+
value="run_qwen_zh",
|
1092 |
+
label="选择功能模块",
|
1093 |
+
interactive=True,
|
1094 |
+
)
|
1095 |
+
|
1096 |
+
# 模块描述文本框
|
1097 |
+
module_description = gr.Textbox(
|
1098 |
+
value=MODULE_DESCRIPTIONS["run_qwen_zh"],
|
1099 |
+
label="模块描述",
|
1100 |
+
interactive=False,
|
1101 |
+
elem_classes="module-info",
|
1102 |
+
)
|
1103 |
+
|
1104 |
+
with gr.Row():
|
1105 |
+
run_button = gr.Button(
|
1106 |
+
"运行", variant="primary", elem_classes="primary"
|
1107 |
)
|
1108 |
+
|
1109 |
+
status_output = gr.HTML(
|
1110 |
+
value="<span class='status-indicator status-success'></span> 已就绪",
|
1111 |
+
label="状态",
|
1112 |
+
)
|
1113 |
+
token_count_output = gr.Textbox(
|
1114 |
+
label="令牌计数", interactive=False, elem_classes="token-count"
|
1115 |
+
)
|
1116 |
+
|
1117 |
+
with gr.Tabs(): # 设置对话记录为默认选中的标签页
|
1118 |
+
with gr.TabItem("对话记录"):
|
1119 |
+
# 添加对话记录显示区域
|
1120 |
+
log_display2 = gr.Textbox(
|
1121 |
+
label="对话记录",
|
1122 |
+
lines=25,
|
1123 |
+
max_lines=100,
|
1124 |
interactive=False,
|
1125 |
+
autoscroll=True,
|
1126 |
+
show_copy_button=True,
|
1127 |
+
elem_classes="log-display",
|
1128 |
+
container=True,
|
1129 |
+
value="",
|
1130 |
)
|
1131 |
+
|
1132 |
with gr.Row():
|
1133 |
+
refresh_logs_button2 = gr.Button("刷新记录")
|
1134 |
+
auto_refresh_checkbox2 = gr.Checkbox(
|
1135 |
+
label="自动刷新", value=True, interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1136 |
)
|
1137 |
+
clear_logs_button2 = gr.Button("清空记录", variant="secondary")
|
1138 |
|
1139 |
+
with gr.TabItem("环境变量管理", id="env-settings"):
|
1140 |
+
with gr.Box(elem_classes="env-manager-container"):
|
|
|
|
|
1141 |
gr.Markdown("""
|
1142 |
+
## 环境变量管理
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1143 |
|
1144 |
+
在此处设置模型API密钥和其他服务凭证。这些信息将保存在本地的`.env`文件中,确保您的API密钥安全存储且不会上传到网络。
|
1145 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1146 |
|
1147 |
+
# 主要内容分为两列布局
|
1148 |
+
with gr.Row():
|
1149 |
+
# 左侧列:环境变量管理控件
|
1150 |
+
with gr.Column(scale=3):
|
1151 |
+
with gr.Box(elem_classes="env-controls"):
|
1152 |
+
# 环境变量表格 - 设置为可交互以直接编辑
|
1153 |
+
gr.Markdown("### 环境变量管理")
|
1154 |
+
gr.Markdown("""
|
1155 |
+
管理您的API密钥和其他环境变量。正确设置API密钥对于OWL系统的功能至关重要。
|
1156 |
+
|
1157 |
+
<div style="background-color: #e7f3fe; border-left: 6px solid #2196F3; padding: 10px; margin: 15px 0; border-radius: 4px;">
|
1158 |
+
<strong>提示:</strong> 请确保正确设置API密钥以确保系统功能正常
|
1159 |
+
</div>
|
1160 |
+
""")
|
1161 |
|
1162 |
+
# 增强版环境变量表格,支持添加和删除行
|
1163 |
+
env_table = gr.Dataframe(
|
1164 |
+
headers=["变量名", "值", "获取指南"],
|
1165 |
+
datatype=[
|
1166 |
+
"str",
|
1167 |
+
"str",
|
1168 |
+
"html",
|
1169 |
+
], # 将最后��列设置为html类型以支持链接
|
1170 |
+
row_count=10, # 增加行数,以便添加新变量
|
1171 |
+
col_count=(3, "fixed"),
|
1172 |
+
value=update_env_table,
|
1173 |
+
label="API密钥和环境变量",
|
1174 |
+
interactive=True, # 设置为可交互,允许直接编辑
|
1175 |
+
elem_classes="env-table",
|
1176 |
+
)
|
1177 |
|
1178 |
+
# 操作说明
|
1179 |
+
gr.Markdown(
|
1180 |
+
"""
|
1181 |
+
<div style="background-color: #fff3cd; border-left: 6px solid #ffc107; padding: 10px; margin: 15px 0; border-radius: 4px;">
|
1182 |
+
<strong>操作指南</strong>:
|
1183 |
+
<ul style="margin-top: 8px; margin-bottom: 8px;">
|
1184 |
+
<li><strong>编辑变量</strong>: 直接点击表格中的"值"单元格进行编辑</li>
|
1185 |
+
<li><strong>添加变量</strong>: 在空白行中输入新的变量名和值</li>
|
1186 |
+
<li><strong>删除变量</strong>: 清空变量名即可删除该行</li>
|
1187 |
+
<li><strong>获取API密钥</strong>: 点击"获取指南"列中的链接获取相应API密钥</li>
|
1188 |
+
</ul>
|
1189 |
+
<strong>注意</strong>: 所有API密钥都安全地存储在本地,不会上传到网络
|
1190 |
+
</div>
|
1191 |
+
""",
|
1192 |
+
elem_classes="env-instructions",
|
1193 |
+
)
|
1194 |
+
|
1195 |
+
# 环境变量操作按钮
|
1196 |
+
with gr.Row(elem_classes="env-buttons"):
|
1197 |
+
save_env_button = gr.Button(
|
1198 |
+
"💾 保存更改",
|
1199 |
+
variant="primary",
|
1200 |
+
elem_classes="env-button",
|
1201 |
+
)
|
1202 |
+
refresh_button = gr.Button(
|
1203 |
+
"🔄 刷新列表", elem_classes="env-button"
|
1204 |
+
)
|
1205 |
+
|
1206 |
+
# 状态显示
|
1207 |
+
env_status = gr.HTML(
|
1208 |
+
label="操作状态",
|
1209 |
+
value="",
|
1210 |
+
elem_classes="env-status",
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
# 连接事件处理函数
|
1214 |
+
save_env_button.click(
|
1215 |
+
fn=save_env_table_changes,
|
1216 |
+
inputs=[env_table],
|
1217 |
+
outputs=[env_status],
|
1218 |
+
).then(fn=update_env_table, outputs=[env_table])
|
1219 |
+
|
1220 |
+
refresh_button.click(fn=update_env_table, outputs=[env_table])
|
1221 |
+
|
1222 |
+
# 示例问题
|
1223 |
+
examples = [
|
1224 |
+
"打开百度搜索,总结一下camel-ai的camel框架的github star、fork数目等,并把数字用plot包写成python文件保存到本地,用本地终端执行python文件显示图出来给我",
|
1225 |
+
"浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格",
|
1226 |
+
"写一个hello world的python文件,保存到本地",
|
1227 |
+
]
|
1228 |
+
|
1229 |
+
gr.Examples(examples=examples, inputs=question_input)
|
1230 |
+
|
1231 |
+
gr.HTML("""
|
1232 |
<div class="footer" id="about">
|
1233 |
<h3>关于 OWL 多智能体协作系统</h3>
|
1234 |
<p>OWL 是一个基于CAMEL框架开发的先进多智能体协作系统,旨在通过智能体协作解决复杂问题。</p>
|
|
|
1236 |
<p><a href="https://github.com/camel-ai/owl" target="_blank">GitHub</a></p>
|
1237 |
</div>
|
1238 |
""")
|
1239 |
+
|
1240 |
+
# 设置事件处理
|
1241 |
+
run_button.click(
|
1242 |
+
fn=process_with_live_logs,
|
1243 |
+
inputs=[question_input, module_dropdown],
|
1244 |
+
outputs=[token_count_output, status_output, log_display2],
|
1245 |
+
)
|
1246 |
+
|
1247 |
+
# 模块选择更新描述
|
1248 |
+
module_dropdown.change(
|
1249 |
+
fn=update_module_description,
|
1250 |
+
inputs=module_dropdown,
|
1251 |
+
outputs=module_description,
|
1252 |
+
)
|
1253 |
+
|
1254 |
+
# 对话记录相关事件处理
|
1255 |
+
refresh_logs_button2.click(
|
1256 |
+
fn=lambda: get_latest_logs(100, LOG_QUEUE), outputs=[log_display2]
|
1257 |
+
)
|
1258 |
+
|
1259 |
+
clear_logs_button2.click(fn=clear_log_file, outputs=[log_display2])
|
1260 |
+
|
1261 |
+
# 自动刷新控制
|
1262 |
+
def toggle_auto_refresh(enabled):
|
1263 |
+
if enabled:
|
1264 |
+
return gr.update(every=3)
|
1265 |
+
else:
|
1266 |
+
return gr.update(every=0)
|
1267 |
+
|
1268 |
+
auto_refresh_checkbox2.change(
|
1269 |
+
fn=toggle_auto_refresh,
|
1270 |
+
inputs=[auto_refresh_checkbox2],
|
1271 |
+
outputs=[log_display2],
|
1272 |
+
)
|
1273 |
+
|
1274 |
+
# 不再默认自动刷新日志
|
1275 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1276 |
return app
|
1277 |
|
1278 |
+
|
1279 |
# 主函数
|
1280 |
def main():
|
1281 |
try:
|
|
|
1283 |
global LOG_FILE
|
1284 |
LOG_FILE = setup_logging()
|
1285 |
logging.info("OWL Web应用程序启动")
|
1286 |
+
|
1287 |
# 启动日志读取线程
|
1288 |
+
log_thread = threading.Thread(
|
1289 |
+
target=log_reader_thread, args=(LOG_FILE,), daemon=True
|
1290 |
+
)
|
1291 |
log_thread.start()
|
1292 |
logging.info("日志读取线程已启动")
|
1293 |
+
|
1294 |
# 初始化.env文件(如果不存在)
|
1295 |
init_env_file()
|
1296 |
app = create_ui()
|
1297 |
+
|
1298 |
# 注册应用关闭时的清理函数
|
1299 |
def cleanup():
|
1300 |
global STOP_LOG_THREAD, STOP_REQUESTED
|
1301 |
STOP_LOG_THREAD.set()
|
1302 |
STOP_REQUESTED.set()
|
1303 |
logging.info("应用程序关闭,停止日志线程")
|
1304 |
+
|
1305 |
+
app.queue()
|
1306 |
+
app.launch(share=False, server_name="127.0.0.1", server_port=7860)
|
1307 |
except Exception as e:
|
1308 |
logging.error(f"启动应用程序时发生错误: {str(e)}")
|
1309 |
print(f"启动应用程序时发生错误: {str(e)}")
|
1310 |
import traceback
|
1311 |
+
|
1312 |
traceback.print_exc()
|
1313 |
+
|
1314 |
finally:
|
1315 |
# 确保日志线程停止
|
1316 |
STOP_LOG_THREAD.set()
|
1317 |
STOP_REQUESTED.set()
|
1318 |
logging.info("应用程序关闭")
|
1319 |
|
1320 |
+
|
1321 |
if __name__ == "__main__":
|
1322 |
+
main()
|
pyproject.toml
CHANGED
@@ -21,7 +21,7 @@ keywords = [
|
|
21 |
"learning-systems"
|
22 |
]
|
23 |
dependencies = [
|
24 |
-
"camel-ai[all]==0.2.
|
25 |
"chunkr-ai>=0.0.41",
|
26 |
"docx2markdown>=0.1.1",
|
27 |
"gradio>=3.50.2",
|
|
|
21 |
"learning-systems"
|
22 |
]
|
23 |
dependencies = [
|
24 |
+
"camel-ai[all]==0.2.30",
|
25 |
"chunkr-ai>=0.0.41",
|
26 |
"docx2markdown>=0.1.1",
|
27 |
"gradio>=3.50.2",
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
camel-ai[all]==0.2.
|
2 |
chunkr-ai>=0.0.41
|
3 |
docx2markdown>=0.1.1
|
4 |
gradio>=3.50.2
|
|
|
1 |
+
camel-ai[all]==0.2.30
|
2 |
chunkr-ai>=0.0.41
|
3 |
docx2markdown>=0.1.1
|
4 |
gradio>=3.50.2
|
uv.lock
CHANGED
@@ -482,7 +482,7 @@ wheels = [
|
|
482 |
|
483 |
[[package]]
|
484 |
name = "camel-ai"
|
485 |
-
version = "0.2.
|
486 |
source = { registry = "https://pypi.org/simple" }
|
487 |
dependencies = [
|
488 |
{ name = "colorama" },
|
@@ -499,9 +499,9 @@ dependencies = [
|
|
499 |
{ name = "pyyaml" },
|
500 |
{ name = "tiktoken" },
|
501 |
]
|
502 |
-
sdist = { url = "https://files.pythonhosted.org/packages/
|
503 |
wheels = [
|
504 |
-
{ url = "https://files.pythonhosted.org/packages/
|
505 |
]
|
506 |
|
507 |
[package.optional-dependencies]
|
@@ -3575,7 +3575,7 @@ dependencies = [
|
|
3575 |
|
3576 |
[package.metadata]
|
3577 |
requires-dist = [
|
3578 |
-
{ name = "camel-ai", extras = ["all"], specifier = "==0.2.
|
3579 |
{ name = "chunkr-ai", specifier = ">=0.0.41" },
|
3580 |
{ name = "docx2markdown", specifier = ">=0.1.1" },
|
3581 |
{ name = "gradio", specifier = ">=3.50.2" },
|
|
|
482 |
|
483 |
[[package]]
|
484 |
name = "camel-ai"
|
485 |
+
version = "0.2.30"
|
486 |
source = { registry = "https://pypi.org/simple" }
|
487 |
dependencies = [
|
488 |
{ name = "colorama" },
|
|
|
499 |
{ name = "pyyaml" },
|
500 |
{ name = "tiktoken" },
|
501 |
]
|
502 |
+
sdist = { url = "https://files.pythonhosted.org/packages/ef/86/57cbcae86d2d60dab0aad31b5302525c75f45ff5edc3c3819a378fa9e12c/camel_ai-0.2.30.tar.gz", hash = "sha256:e1639376e70e9cf1477eca88d1bdc1813855cbd1db683528e1f93027b6aa0b0a", size = 442842 }
|
503 |
wheels = [
|
504 |
+
{ url = "https://files.pythonhosted.org/packages/85/fe/8f1d17896aedbc9e0dfa1bff40d560e5a6808d9b727e04c293be6be5954f/camel_ai-0.2.30-py3-none-any.whl", hash = "sha256:e09eec860331cdb4da4e49f46f5d45345a81820c5847556fdf9e7827dd9bbfa9", size = 752672 },
|
505 |
]
|
506 |
|
507 |
[package.optional-dependencies]
|
|
|
3575 |
|
3576 |
[package.metadata]
|
3577 |
requires-dist = [
|
3578 |
+
{ name = "camel-ai", extras = ["all"], specifier = "==0.2.30" },
|
3579 |
{ name = "chunkr-ai", specifier = ">=0.0.41" },
|
3580 |
{ name = "docx2markdown", specifier = ">=0.1.1" },
|
3581 |
{ name = "gradio", specifier = ">=3.50.2" },
|