File size: 3,660 Bytes
4ca8fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8fb8de8
0848a53
8fb8de8
a74bf0a
4ca8fdc
8fb8de8
3808745
 
 
8fb8de8
4ca8fdc
 
7a12aab
 
 
 
 
4ca8fdc
7a12aab
8fb8de8
 
3808745
8fb8de8
 
 
 
4ca8fdc
8fb8de8
4ca8fdc
e7cbfb1
4ca8fdc
 
8fb8de8
 
4ca8fdc
e7cbfb1
4ca8fdc
 
8fb8de8
 
4ca8fdc
e7cbfb1
4ca8fdc
 
8fb8de8
 
4ca8fdc
 
 
 
8fb8de8
 
a74bf0a
4ca8fdc
 
8fb8de8
4ca8fdc
8fb8de8
0eff6e1
d557cc1
8fb8de8
 
4ca8fdc
8fb8de8
4ca8fdc
 
 
8fb8de8
4ca8fdc
 
8fb8de8
 
3808745
8fb8de8
 
 
 
 
4ca8fdc
8fb8de8
4ca8fdc
8fb8de8
 
 
 
0848a53
 
 
 
 
 
 
8fb8de8
 
 
4ca8fdc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========

# To run this file, you need to configure the Qwen API key
# You can obtain your API key from Bailian platform: bailian.console.aliyun.com
# Set it as QWEN_API_KEY="your-api-key" in your .env file or add it to your environment variables

from dotenv import load_dotenv
import sys
from camel.models import ModelFactory
from camel.toolkits import BrowserToolkit, SearchToolkit, FileWriteToolkit
from camel.types import ModelPlatformType, ModelType

from owl.utils import run_society

from camel.societies import RolePlaying

from camel.logger import set_log_level

import pathlib

base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))

set_log_level(level="DEBUG")


def construct_society(question: str) -> RolePlaying:
    r"""Construct the society based on the question."""

    user_role_name = "user"
    assistant_role_name = "assistant"

    user_model = ModelFactory.create(
        model_platform=ModelPlatformType.QWEN,
        model_type=ModelType.QWEN_MAX,
        model_config_dict={"temperature": 0},
    )

    assistant_model = ModelFactory.create(
        model_platform=ModelPlatformType.QWEN,
        model_type=ModelType.QWEN_MAX,
        model_config_dict={"temperature": 0},
    )

    planning_model = ModelFactory.create(
        model_platform=ModelPlatformType.QWEN,
        model_type=ModelType.QWEN_MAX,
        model_config_dict={"temperature": 0},
    )

    web_model = ModelFactory.create(
        model_platform=ModelPlatformType.QWEN,
        model_type=ModelType.QWEN_VL_MAX,
        model_config_dict={"temperature": 0},
    )

    tools_list = [
        *BrowserToolkit(
            headless=False,
            web_agent_model=web_model,
            planning_agent_model=planning_model,
            output_language="Chinese",
        ).get_tools(),
        SearchToolkit().search_baidu,
        *FileWriteToolkit(output_dir="./").get_tools(),
    ]

    user_role_name = "user"
    user_agent_kwargs = dict(model=user_model)
    assistant_role_name = "assistant"
    assistant_agent_kwargs = dict(model=assistant_model, tools=tools_list)

    task_kwargs = {
        "task_prompt": question,
        "with_task_specify": False,
    }

    society = RolePlaying(
        **task_kwargs,
        user_role_name=user_role_name,
        user_agent_kwargs=user_agent_kwargs,
        assistant_role_name=assistant_role_name,
        assistant_agent_kwargs=assistant_agent_kwargs,
        output_language="Chinese",
    )

    return society


# Example case
default_task = "浏览亚马逊并找出一款对程序员有吸引力的产品。请提供产品名称和价格"

# Override default task if command line argument is provided
task = sys.argv[1] if len(sys.argv) > 1 else default_task

# Construct and run the society
society = construct_society(task)

answer, chat_history, token_count = run_society(society)

print(f"\033[94mAnswer: {answer}\033[0m")