File size: 3,836 Bytes
4ca8fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0848a53
38255bb
4ca8fdc
38255bb
 
2ffc766
38255bb
d557cc1
2ffc766
38255bb
 
7a12aab
 
4ca8fdc
3808745
 
7a12aab
4ca8fdc
 
 
7a12aab
 
 
38255bb
 
3808745
38255bb
4ca8fdc
38255bb
 
4ca8fdc
38255bb
3808745
38255bb
4ca8fdc
38255bb
 
 
 
 
 
 
 
 
 
 
 
 
4ca8fdc
38255bb
 
2ffc766
4ca8fdc
 
0eff6e1
2ffc766
d557cc1
38255bb
4ca8fdc
38255bb
 
 
4ca8fdc
38255bb
 
 
 
 
4ca8fdc
38255bb
3808745
38255bb
 
 
 
 
4ca8fdc
38255bb
4ca8fdc
38255bb
 
 
 
 
 
0848a53
 
 
 
4ca8fdc
38255bb
0848a53
 
38255bb
4ca8fdc
38255bb
4ca8fdc
38255bb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ========= Copyright 2023-2024 @ CAMEL-AI.org. All Rights Reserved. =========


# To run this file, you need to configure the DeepSeek API key
# You can obtain your API key from DeepSeek platform: https://platform.deepseek.com/api_keys
# Set it as DEEPSEEK_API_KEY="your-api-key" in your .env file or add it to your environment variables

import sys
from dotenv import load_dotenv

from camel.models import ModelFactory
from camel.toolkits import (
    ExcelToolkit,
    SearchToolkit,
    FileWriteToolkit,
    CodeExecutionToolkit,
)
from camel.types import ModelPlatformType, ModelType
from camel.societies import RolePlaying
from camel.logger import set_log_level

from owl.utils import run_society

import pathlib

set_log_level(level="DEBUG")

base_dir = pathlib.Path(__file__).parent.parent
env_path = base_dir / "owl" / ".env"
load_dotenv(dotenv_path=str(env_path))


def construct_society(question: str) -> RolePlaying:
    r"""Construct a society of agents based on the given question.

    Args:
        question (str): The task or question to be addressed by the society.

    Returns:
        RolePlaying: A configured society of agents ready to address the question.
    """

    # Create models for different components
    models = {
        "user": ModelFactory.create(
            model_platform=ModelPlatformType.DEEPSEEK,
            model_type=ModelType.DEEPSEEK_CHAT,
            model_config_dict={"temperature": 0},
        ),
        "assistant": ModelFactory.create(
            model_platform=ModelPlatformType.DEEPSEEK,
            model_type=ModelType.DEEPSEEK_CHAT,
            model_config_dict={"temperature": 0},
        ),
    }

    # Configure toolkits
    tools = [
        *CodeExecutionToolkit(sandbox="subprocess", verbose=True).get_tools(),
        SearchToolkit().search_duckduckgo,
        SearchToolkit().search_wiki,
        SearchToolkit().search_baidu,
        *ExcelToolkit().get_tools(),
        *FileWriteToolkit(output_dir="./").get_tools(),
    ]

    # Configure agent roles and parameters
    user_agent_kwargs = {"model": models["user"]}
    assistant_agent_kwargs = {"model": models["assistant"], "tools": tools}

    # Configure task parameters
    task_kwargs = {
        "task_prompt": question,
        "with_task_specify": False,
    }

    # Create and return the society
    society = RolePlaying(
        **task_kwargs,
        user_role_name="user",
        user_agent_kwargs=user_agent_kwargs,
        assistant_role_name="assistant",
        assistant_agent_kwargs=assistant_agent_kwargs,
        output_language="Chinese",
    )

    return society


def main():
    r"""Main function to run the OWL system with an example question."""
    # Example research question
    default_task = "搜索OWL项目最近的新闻并生成一篇报告,最后保存到本地。"

    # Override default task if command line argument is provided
    task = sys.argv[1] if len(sys.argv) > 1 else default_task

    # Construct and run the society
    society = construct_society(task)

    answer, chat_history, token_count = run_society(society)

    # Output the result
    print(f"\033[94mAnswer: {answer}\033[0m")


if __name__ == "__main__":
    main()