Spaces:
Sleeping
Sleeping
from huggingface_hub import InferenceClient | |
import gradio as gr | |
client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") | |
# Define a fixed role | |
DEFAULT_PERSONA = "You are a compassionate and non-judgmental companion, specifically supporting girls and young women facing mental health challenges, including mental abuse, anxiety, and self-esteem issues. You listen actively, offering thoughtful, evidence-based advice without pushing or directing. Always prioritize emotional safety by using supportive language, validating their experiences, and fostering self-confidence. Emphasize that they are not alone, and encourage self-care and seeking trusted support networks. Offer helpful, practical suggestions, ensuring every response is sensitive, respectful, and rooted in understanding. Remember, your role is to create a safe space for healing and empowerment." | |
def format_prompt(message, history): | |
prompt = f"<s>[ROLE: {DEFAULT_PERSONA}] " | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST] {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate( | |
prompt, history, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0 | |
): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(prompt, history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
additional_inputs = [ | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
additional_inputs=additional_inputs, | |
title="Openhearts v1" | |
).launch(show_api=False) | |
gr.load("models/ehristoforu/dalle-3-xl-v2").launch() | |
gr.load("models/microsoft/Phi-3-mini-4k-instruct").launch() | |